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A. Block Coding and Synchronization Study:
Subcarrier Tracking Methods and
Communication System Design, w. C. Lindsey

1. Introduction

Various commenication systems, e.g., binary PSK, trans-
mit information in the form s(¢) = (2)'s Am (¢) sin (w.t + 6).
In order that the received signal be demodulated coher-
ently, it is necessary to determine or estimate the phase ¢
and frequency of the subcarrier (2)"sin (w.t + ) with as
little error as possible. If the signal s (¢) contains a residual
component of sufficient strength at t..e subcarrier fre-
quency, this component could be tracked with a narrow-
band phase-locked loop and used to provide the desired
reference signal. On the other hand, the power contained
in the residual component represents power which does
nox convey any information other than the frequency and
phase of the subcarrier. Thus, it represents power not
available for the transmission of data, and, in practice, it
is always of interest to investigate techniques which con-
serve and save power.

Several prrctical methods are available which rely
upon the transmission of a reference signal. For example,
the phase reference may be trarsmitted along with a
PSK signal, and in c-der to maintain proper phase-
synchronization, the phase-keyed signal and the reference
sigzal must be close to each other in frequency and in
time such that any channel fluctuations along the propaga-
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tion path affect both signals the ;ame way. For complete-
ness, several mcthods of great practical importance are
discussed below.

First, we have differential phase-shift keying (DPSK).
In a DPSK system the PSK signal serves as the data signal
and the reference signal. The phase of the signal received
during one signaling interval serves as a reference for the
next keying interval. The Kineplex (Ref. 1) is an example
of a system which has been mechanized.

Second, we have the sc -called adjacent tone reference
PSK system (AT-PSK). The reference signal for this sys-
tem is transmitted at an adjacent frequency simultane-
ously with the keyed signal. At the receiver, the phase of
the reference is adjusted to ccmpensate for the frequency
difference between the reference signal and the phase-
keyed signal. A practical system which employs this prin-
ciple is illustrated by the DEFT system (Ref. 2)

Third is a system referred to as the quadrature refer-
ence PSK system (Q-PSK). In this system, the phase of
one quadrature component is modulated with the data
stream while the phase of the in-phase component ren.ains
unkeyed. The Kathryn system is an example of this tech-
nique (Ref. 3).

Finally, the so-called decision-directed measurement
PSK (DDM-PSK) technique is employed. This system
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reconstructs a reference signal b estimating the modula-
tion itself and using this estimate to eliminate it from the
received signal. The decision directed systemis, in essence,
a generalization of the DPSK system. which uses the pre-
vious signaling interval. A computer simulation of this
type of system has been carried out by Proakis, Drouilhet,
and Price (Ref. 4). More recently Bussgang and Leiter
(Ref. 5) derived the perforinance of a communication sys-
tem in which a reference signal is transmitted at a fre-
quency adjacent to the phase-keyed tone. Also, Bussgang
and Leiter report results pertinent to the problem of the
joint occurrence of two character errors on a multiple
phase-keyed signal.

A number of methods have been proposed for generat-
ing a reference subcarrier from the received signal even
when the residual subcarrier component is not available.
This report analyzes and ~ompares two methods of great
practical interest in deep-space work. The results of the
analysis are used to establish the performance of phase-
coherent communication systems which utilize such sub-
carrier tracking methods. The first, the squaring-loop
method, has been analyzed in a number of papers,
Refs. 6-9. The second method, originally proposed by
Costas, is the Costas-loop (Ref. 10). This article establishes
the performance of these two subcarrier tracking methods
using the Fokker-Planck apparatus as opposed to using
linear tracking theory. The results are then used in pre-
dicting the performance of uncoded and block-coded
cor.munication systems. The theory developed is useful
in the design and testing of subcarrier tracking loops and
data detectors.

2. The Squaring-Loop Method

Of main concern here will be that of establishing a
coherent subcarrier reference for demodulation of 180-deg
PSK modulation. The mechanization of a typical squaring
100p is illustrated in Fig. 1. The received signal y(t) is
bandpass filtered, squared to remove the modulation m (¢),
and the resultant double frequency term is tracked by
means of a conventional phase-locked loop (PLL) whose
noise bandwidth is w,, cycles. When the output frequency

I(')I # (o) »| souarer 2(?) % G(’)ﬂ Ao)
N
| V€O
Fig. 1. The squaring loop
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of the PLL is divided by two. a coherent reference signal
is available for demodulation purposes.

In deciding upon 2 method of determining the per-
formance of the squaring loon. a significant parameter is
the bandwidth of the bandpass filter whose transfer func-
tion is dencted by H, (p), and p is the Heaviside op>rator.
In fact. if the input is contaminated by white ncise of
spectral density N, w cvele single-sided, and if the baad-
width of the filter is so large that the correlation time 7,
of its output noise is much smaller than the time constant
1,/w,, of the phase-locked loop,' the squaring-loop may be
analyzed by using the mathematical techniques available
from the theory of Markov processes—in particular, the
Fokker-Flanck equation, Ref. 11.

As the bandwidth B, of the bandpass filter is narrowed,
the correlation time r, of the output noise increases and
may become equal or even greater than the time constant
1/w,, of the phase-locked loop. The cases when r, = 1,/w,
are no less important in practice than the other extreme,
when 7, < 1,w,. However, the latter case is considered
here for a constant frequency signal, and we neglect any
spurious noise which may be generated due tc imperfect
system oscillators. Such fluctuations may be included with
no great mathematical difficulty.

Let the observed data y (t) be denoted by
y (t) = (22 Am (t) sin (wot + 6) + n(t) (1)

where m (t) is the signal envelope, i.e., the modulation,
and let

n(t) = n, (t) cos (wet + ) + n, (t) sin (wet + 6) (2)

be a reslization of narrowband noise process, where n, (t)
and n, (t) are sample functions of joint stationary Gaussian
processes. We assume that the correlation time r, of the
noise is small in comparison with the time constant of
the PLL, ie., r, << l/w,.

Assuming a perfect square-law characteristic, the out-
put process z (t) is related to the input process y () through

z(t) = [y () Hi (p)]* @

'Correlation time of the random process {x(t))} is defined by the
relation r = 7| R. (r)|dr, where R.(r) is the normalized correla-
tion function of the process. The parameter » gives some idea of
the size of the time interval over which correlation extends between
values of the process x (¢).
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where H, (p) is the transfer function of the bandpass filter On substituting for y (¢) into Eq. (3) and taking only the

and p = d dt is the Heaviside operator. terms around 2w, vields, in operator form,
_ ’ o ni(t) ni(t)
3(t) = Hi(p) { —A'm* (t) + 5 T3 T (2)'2Am (t) n. (t) | cos (2wt + 20)
+ [(2)2Am(t) n, (t) + n, () n. ()] sin (2ot + 20)} 4)

The output of the multiplier is ¢ (f) = K,z (t) r (), where K,, is the multiplier constant. A convenient representation for
r(t) is denoted by
A
r(t) = (2)'sin [2u. + 26] ®)

If one takes only those terms in the base band frequency region, the product r (¢) z (t) becomes

2t)r () = —K—%Q’—) {[A'-'m'-' (t) — "—‘”—g"—@ +(2)'¢Am (t) n, (t)] sin[2(6 — 6)] + [(2)2Am () ny (¢)

+ n, () n. (t)] cos [2 (6 — é‘)]} (6)

The phase 4 (¢) of the voltage control oscillator (VCO) output is related to its input through

A

00 = 220 F (o) @

where Kvco is the VCO gain constant in rad/sec-v. Neglecting any doppler present (this will be small in practice) on 6 (¢)
we have from Egs. (6) and (7) the following stochastic differential equation of operation of a squaring loop, viz.,

i + KK OO (sine ®

where ¢ = 6 — § and

ut,¢) = choKsz(p) Hi(p) {[niz(t) _ 11«‘::2(t) ~ (@)% Am () n, (t)] sin 2¢
— [(2)% Am (£) ns (£) + 1s (£) ne (£)] cos 2¢} ©)

If we let & = 2¢, K = KyoKn, assume that over the bandwidth of significant interest that the filter H; (p) = 1, and con-
sider a first-order PLL,, i.e,, F (p) = 1, we have

ni(e) _ ni(t)

é + KA*m? (t)sin® = K {[ 5 5 (2)% Am () n. (t)]sind>

— [(2)%Am (t) n, (t) + n,(t) n. (t)] cos d>} (10)
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We may now determine the probability density of &,
using the Fokker-Flanck method. The equation of opera-
tion is of the form & = F [&_ u (b, t)] for which the corre-
sponding Fokker-Planck equation (Ret. 11) is, in the
stationary casc,

y e K@) p(@) — K @)p@)] -~ 0 (L
where
K, (¢) =F[o,u(s,t)]
and

K, (®) = [ (F &, u(e,t)] Fo,t 4 7)] — Ki(d)} dr

and the bar denotes statistical averaging over the en-
semble. If we make the assumptions that ¢ is a slowly
varying process, m(f) = =1, we find from Eqs. (10) and
(11) that

K, (¢) = KA*sin ¢

and

x°

[a""R';',l (r) + 2A*R,, (1)] dr
(12)

K. (#) = K¢o* [

%

where ¢* and R, (7) are, respectively, the variance and
the envelope of the correlation function of the noise com-
ponent in Eq. (2). They correspond to the variance and
correlation function of the independent processes n, (¢)
and n.(t) in Eq. (2). Substitution of Eq. (12) into the
partial differential equation given in Eq. (11) and using
the boundary conditions

f "p@)de =1
p(®+2n) =p(2) (13)
we have as a solution to Eq. (11)

AK
exp| -—cnosd

p(‘b) = 2.”10 (A'K/Kz) l@l <= (14)

274

where I, (x) is the modified Bessel function of zero order
and of argument x. If we introduce the change of variable
¢ - 2¢ and make use of the Jacobian of the transforma-
tion, we find that

_exp [(AK/K.) cos 2¢]
ple -I(AK K’

o] < =/2
(15)

As a first example of our results, assume that the normal-
ized cerrelation function of the envelope of the input
noise process possesses a Markov-type power spectrum
with variance o= = N.B,, i.e.,

R, () =exp[~2B,[s[] =R,,()  (16)

where B, is the one-sided bandwidth of the noise n, (¢)
or n, (t). Physically, Eq. (16) represents a noise source that
has been generated by passing white noise through an
RC filter which possesses a 3-db frequency of B, /2= Hz.
Thus, K. (¢) in Eq. (12) becomes

e A
K. = 2K-o [43' + B’] (17)

and the solution in Eq. (15) is given by

exp [D cos 2¢]
p(¢) =—I‘)ﬁ—lu(—l)—)i; |¢|==/2
(18)
where
x 1
D= 5[1 - gg} (19)
L xy
and
L2 B
- N(,w,, ’ y= w

Here 1wy, is taken to be the bandwidth of the loop, as de-
fined irom the linear PLL theory, i.e.,

joo
w, = 2b, =—21;’,/1 |H(s)|*ds = AK/4  (20)
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where H (s) is the closed-loop transfer function of the loop
in linearized form. The square of the signal amplitude A
is present because of the squaring operation.

As a second example, assume that

Ro. () = Ry, (1) = sinw B,r @1)
‘ xB,r
then it is easy to show that
x 1
= = ————— 29
D=7 I:l + l/xy] (22)
where
_ A _w
= Nuwb ’ y - Bi

Other presquaring filters may be easily evaluated. The
two examples given represent results for the limiting cases
of the class of Butterworth-type spectra.

If one assumes that ¢ is small, then the distribution of
¢ becomes Gaussian with variance

° = { {1 + l/xy]}q )

This result agrees with that obtained using linear PLL
theory (Refs. 1-4). The variance of the phase-error @, as
determined from Eq. (14), is

2 XOV(—1FL(D)
’3‘3“2 & 1,(D)

k=1

where I; (D) is the modified Bessel function of order k
and argument D. For large D, o} approaches 1/D, as it
should.

3. The Cosfas-Loop

In the Costas-loop shown in Fig. 2, the phase of the
data subcarrier is extracted from the suppressed carrier
signal s (t) plus noise n(t) by multiplying the input volt-
ages of the two phase detectors (multipliers) with that
produced from the output of the VCO and a 90-deg phase
shift of that voltage, filtering the results and using this
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Fig. 2. The Costas-loop

signal to control the phase and frequency of the loop’s
VCO output.

If we denote the output of the upper loop multiplier

by z.(t) and the output of the lower loop multiplier by
z, (t) (see Fig. 2) then the output z. (t) is

2 (t) = y () * (2)% cos (wo t + 6) (24)
while the output of the low-pass filter becomes
y.(t) = [Am (t) + (2)(%)] in¢ + (é)(%) cos ¢
(25)

when Eq. (1) is substituted into Eq. (24) and all double
frequency terms are neglected. Similarly, the output y, (t)
is given by

y.(t)=|:Am(t)+f(‘;)(,2]cos¢ @ ;2 sin ¢
(26)
The control voltage z(t) = y.(t) y, (t) becomes
z(t) =% (Am () + ?;)(2 )2 sin2¢
() n, (t)\ /1 + cos 2¢
+ o (am 0+ ) ()
_m(t) na(t)\ /1 — cos2¢p
o (am 0+ 52) ()
- 2‘4(—‘) sin2¢ t1))
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Now

8 = KycoKuF (p)*z(t)

(28)

and if we omit all dc terms, the stochastic differential equation which governs the behavior of the Costas-loop in the

presence of noise reduces to

¢ + KA*F (p) m* (t) sin® = KF (p) J"["f'z(‘) -

— (2 Am(t)n, (t)] sin® — [(2)% An, (t)m(¢) + n, () n. ()] cos 4:}

If, in the previous case, we ignore the effects of the filter
H, (p), then the stochastic differential equation obtained
for the squaring-loop method and the stochastic differ-
ential equation for the Costas-loop are identical. Thus,
the solution for p (®) is identical, and the ncise behavior
of the two circuits is the same. This, of course, assumes
that the low-pass filter transfer functions can be obtained
by simply translating, by f, Hz, the bandpass fiiter func-
tion of the squaring-loop.

From this it may be concluded that the two approaches
to subcarrier tracking yield equivalent results when the
filters in the Costas-loop are the low-pass equivalents of
the bandpass filter in the squaring-loop. The choice of
which loop to use cannot be determined on theoretical
grounds, and consequently, must be determined from an
engineering hardware point of view, i.e., the relative ease
with which the corresponding filters can be constructed.
Both methods of subcarrier tracking exhibit the usual
180-deg phase ambiguity inherent in all systems that
attempt to recover the subcarrier phase from a modulated
signal, i.e., changing the sign of the received signal leaves
the sign of the recovered subcarrier unaltered.

An obvious question coming to mind is to ask for the
presquaring filter which maximizes the signal-to-noise
ratio (SNR) at the output of the phase-locked loop. This
problem has been solved, and the optimum filter, for the
case where the modulating spectrum is narrow with re-
spect to the carrier frequency, has been shown (SPS 37-37,
Vol. 1V, p. 290) to be given by

S, (p) )"" (30)

Hi(p) =k(s,(p) + No/2

where k is an arbitrary positive constant and S, (p) is the
power spectrum of iodulated signal s (). For large signal-
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ni (t)

2

(29)

to-noise conditions the optimum presquaring filter given
by Eq. (30) becomes H, (s) ~ k while for small signal-to-
noise conditions the optimum filter becomes

Hi ) ~ (52

N, (1)

This says that for small signal-to-noise conditions the
optimum filter is matched to the signaling spectrum.
Arbitrarily setting k = 1 says that the optimum filter for
large SNR is an ideal bandpass filter for which the per-
formance has been accessed. On the other hand, for small
SNR the performance of the two loops may be accessed
once the spectrum of the modulated signal s (¢) is defined.
It is our conjecture that the improvement over an ideal
bandpass filter is negligibly small in the SNR region where
such synchronization techniques are useful in practice.
In the next section we show that squaring-loops or Costas-
loops are most useful in data detection systems where the
ratio of data rate &R to the tracking loop bandwidth w,, is
large, i.e., high data rate systems.

Various other approaches to the problem of estimating
the subcarrier phase when no residual component is
present at the subcarrier frequency are available, and in
some cases have been analyzed. Layland (Ref. 9) and
Proakis (Ref. 4) analyze methods which essentially esti-
mate the modulation itself. This estimate is used in an
attempt to eliminate the modulation from the subcarrier.
This, therefore, provides an unmodulated sinusoid which
can be tracked by a PLL.

4. Performance of Correlation Receivers
Consider the situation where {m (¢)} represents the set

of signals {x:(t), k=1, - - - ,N}. For the present we
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assume that each signal in the set occurs with equal prob-
ability, contains equal energies, cxists for a time duration
of T seconds and is orthogonal, i.e.,

/ Cre(6)%, () = 8,0 (32)

where 8, =1 for j = k and § 5 = 0 for j % k. In the pres-
ence of white Gaussian noise the optimum receiver, i.e.,
the one which minimizes the error probability, computes

Cp = / y () 2 (t) dt (33)

0 —y2 /2 Y+(2Rn) % cos ¢ 1

for all k = 1. - - - ,N and makes its decision in favor of
that signal which vyields the largest C;.

Of particular interest here is the case where the set of
signals {x, (¢)} are code words taken from an orthogonal
code dictionary containing N = 2" code words, i.e., the.
signals are sequences of + and — 1's. In this case the time
duration T becomes the product of the number of bits
per code word times the time duration per bit, ie.,
T = nT,. If one assumes that word sync and symbol sync?
(i.e., the instants in time where one word begins and
another ends and the instants in time where the modula-
tion may change states) are known exactly and that either
the squaring-loop method or Costas-loop is used to pro-
vide subcarrier sync, the conditional probability that the
data detector will err may be shown to be given by

(Refs. 13 and 14)
A2 LS
—2—) de (34)

o

where R = A*T,/N,. The average word error probability is obtained from Eq. (34) by averaging over the distribution

of p(¢), ie,
/2
Py = /
~m/
Thus, from Egs. (18), (34) and (35) we have®

_,_ [™*exp(Dcos2¢) exp (
e B2 Y

where
D= SZR —1—] (a7
1+
SyR

if an ideal bandpass filter precedes the squaring-loop or

SyR 1
s

P (¢) s (9) s )
y 2 /2) dy y+(2nR) % cos ¢ exp —x2/2) T
(T)h [ / . "—"("__\2,,,)',2 dx] (36)

if an RC filter centered around o, precedes the squaring-
loop. The parameters R, 8, y and R are defined by

_ AT, _ 2R _ W =1
R= N, ’ GA_wL’ y= i g\)“Tb
(39)

We point out that the parameter <R is the data rate of the
system.

*This assumption is not too restrictive since jitter on the phase of the subcarrier is more deleterious on system performance than jitter about
those instants in time with which the modulation may change states. This, of course, is a consequence of ccherent detection.

In some cases the bit-error probability is of interest. The ratio of the bit-ervor probability to the word error probability is 2°-'/2* — 1

(Ref. 14).
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Eq. (36) has been integrated numerically using an
IBM 704 computer for n = 5-8. The results of the numer-
ical integration are illustrated in Figs. 3-f for the situation
where an ideal bandpass filter precedes the PLL. The
parameter y was set at 1/2000, since this is typical of
what might be encountered in practice. It is clear from
these figures that obtaining subcarrier sync by the
method outlined here is most beneficial in systems where
8 = 2R/w;, > > 1, i.e., high data rate systems.

One may proceed to develop the performance of such
a system for biorthogonal codes. However, if one recalls
that for n>5, the performance of systems which utilize
orthogonal code dictionaries is approximately equal to
systems which employ biorthogonal code dictionaries;
then the results presented in Figs. 3-6 may be used in
carrying out a particular design where biorthogonal codes
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R

are used. The performance of a block-coded system which
uses biorthogonal codes is given by

Pp=1- [:PM)E‘%%(C%@@ (40)

where

_[( exp (—y*/2)
PC (4,) 4/:(2'13) % cos ¢ (2”)%

y+(2nR) % cos ¢ (41)

For n=5, numerical integration of Eq. (38) on the
IBM 7090 produces results, for all practical purposes,
equivalent to those shown in Figs. 3-6.
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Finally, it is of interest to understand how the value of
y = B;/w, affects the performance of a particular design.
This trend is best illustrated, for various values of y, in
Figs. 7-9 for uncoded telemetry systems, and in Figs. 4,
10 and 11 for block-coded telemetry systems. The results
given in Figs. 7-9 were obtained by numerical integra-
tion of Eq. (40) with n = 1, while the results given in
Figs. 4, 10 and 11 are, for all practical purposes, valid for
biorthogonal codes, even though they were computed
from Eq. (34). This is due to the fact, mentioned earlier,
that for n==5 the performance of telemetry systems which
employ orthogonal codes is approximately equivalent to
that of telemetry systems which employ biorthogonal
codcs (Refs. 13 and 14). An obvious conclusion, which
may be reached here, is that for a fixed 8 and R system,
performance improves as the ratio { = B;/w, becomes
larger. This resuit is comprehensible from a physical point
of view.

JPL SPACE PROGRAMS SUMMARY 37-44, VOL. IV

'°°—\& //7 :8:&0— - ne b
\ggices 20 - 1/200 ]
L 2
0~ e \{L— !
AR
RN
L
1
A
. 1A \
07— - \
11 | P13
1 R
W
1074 ll
\
\
lo‘sl |JO 100 1000

Fig. 6. Word error probability P, vs R{n = 8)

5. Conclusion

A model probability distribution for the phase-error
exhibited by the squaring-loop or Costas-loop has been
derived using the Fokker-Planck equation. The param-
eters of this distribution are evaluated in terms of the
covariance function of the input noise and, in particular,
for two specific noise spectra. The model distribution is
then used to assess the degradation in performance of a
coded or uncoded telemetry system which tracks the
phase of the subcarrier, using this method. If the phase
of a suppressed carrier signal is derived from the modu-
lated data subcarrier by means of a Costas-loop or a
squaring-loop, the critical design parameter, which indi-
cates the usefulness of such tracking loops in the
demodulation process, is the ratio of the data-rate to
the bandwidth of the loop. In the case of coded systems,
this implies high-data rates for error rates less than 10-%.
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B. Block Coding and Synchronization Study:
Power Allocation and Noisy Reference
Losses in Phase Coherent Comimunication
Systems, W. C. Lindsey

1. Introduction

The problem of power allocation in deep-space telem-
etry and command systems is becoming more important
in the design and engineering of communication systems.
The reason, of course, is that it is necessary to he able
to predict accurately, prior to launch, the actual behavior
and performance of the system at various times after
Izunch. If this can be accomplished with precision, engi-
neering tradeoffs may be recognized, and the cost of the
mission may be minimized with respect to mission yield.
This is becoming particularly evident in the operation of

a complex communication network, such as the deep
space network.

In this article we present a method whereby the total
transmitter power may be optimally allocated in a single-
channel, phase-coherent communication system of the
type disctssed in Ref. 14. The novelty of the method lies
in the fact that it is simple and c2n be carried out with-
out the aid of a general purpose digital computer. The
method takes into consideration the radio-frequency
(RF) carrier phase-jitter due to a noisy RF reference. The
power is allocated on the basis of minimizing the pro. -
ability that the data detector will err in making its de-
cision. Other results are given which enable one to
determine the losses due to noisy demodulation references
in one-way and two-way systems. The symbols used in
our calculations are defined in Table 1.

2. Basic System M .del

In order to shorten the subsequent derivation, we draw
heavily upon previous results and the notation given in
Refs. 14-16. The basic form of a two-way coherent com-
munication link is depicted in Fig. 12. Briefly,* the ref-
arence transmitter phase modulates the RF carrier, say

‘Reference 14 gives a more detailed description of the overall
system.

Table 1. Definition of symbols

Symbol Definition

n=1 One woy communications

n=2 Two-woy communicotions

P Total overoge tronsmitted power

Ton Time duration per bif

“R » System dota rote

Nos Noise speciral density (single-sided)

Pu System phose-error

Fa(s) Carrier trocking loop filter

L Bandwidth of carrier tracking loop

a Second-order loop parameter ratio (P% K 73/7,

Ha (s) Closed loop transfer function of the carrier tracking
loop ossuming lineor PLL theory

8. Rotio of system deoto rate 1o corrier tracking loop
bandwidth

Re Tolai signal power-lo-noise speciral density rotio times
the duration per bit

G Static phose gain

8 Ratio of corrier tracking loop bondwidth in the vehicle
system 1o tha! in the reference system

Pz (n) System error probability

Pren) Minimum system error probobility

Ras SNR in dote (one-way link)

Res SNR in doto (two-way link) -

a SNR in corrier trocking loop J
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Fig. 12. Two-way cammunication link

¢ (t), with one of two equally probable, equienergy signals
1), k=1, 2 of time duration T,, sec. This signal is
counveniently denoted by

p(f) = (2P,)%sin (ot + (cos™ m,) x4, (1)] (1)

where P, is the total radiated power, and m, is the
modulation factor associated with the reference system.
The channel introduces an arbitrary (but unknown) phase
shift in the transmitted waveform and further disturbs
p(t) with additive white Gaussian noise n, (¢) of single-
sided spectral density of N., w/Hz. Thus, we observe
in the vehicle the following signal:

y (t) = (2P,)% sin [w,t + (c0s™ m,) xi, () + 6,] + n, (8)
(2

The vehicle tracks the carrier component 1n y (t) by means
of a narrow band phase-locked loop (PLL). The output
z(t) of the voltage control oscillator (VCO) of this tracking
filter .. _ed as a coherent reference in demodulating y (t).

The vehicle reference waveform z(?) is conveniently
taken to be

z(t) = (2)% cos (wit + 85) &)
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where é\, is the PLL estimate of 9, in the presenc . 0 ..ise.
After neglecting the double frequency components and
assuming that the data biphase modulates a square wave
subcarrier, it may be shown (Ref. 14) that multiplication
of y (t) with z () produces

y(t) = [(1 — m}) P,)%x;, () cos ¢, + 0 (t) 4)

where n{ (t) is white Gaussian noise of single-sided spectral
density of N, w/Hz, and 4, = 0, — é\, is the vehicle sub-
system phase error. We assume that this phase error is
constant for at least T, sec. Also, we point out (Ref. 14)
that m, represents the square root of the ratio of the power
remaining in the carrier component to the total power
radiated, i.e. m, :: (P.,/P,)%.

The decision in the vehicle is made in favor of that
signal which gives rise to the largest cross correlation, i.e.,
the vehicle demodulator computes

q= f ™y (0) [0 () — 220 ()] dt )

and compares the result with zero. If ¢ >0, =,, is an- ’
nouncer!, and if g <0, x,, is announced.

?T‘v ——— -
e, .




In the revirse direction, i.e., transmission of the data
back to the reference subsystem, the output of the
vehicle’s VCO is used as a carrier for transmission of one
of two equienergy, equiprobable waveforms x;. (t), k =
1,2 of time duration T, sec. In this case, the output of
the vehicle is conveniently represented by the following
waveform

7 (t) = (2P.):sin [t + (cos™ m.) 1 (¢) + 6] (6)

Here m, is the modulation factor which represents the
square root cf the ratio of the power in the carrier to the
total power radiated, ie., m. = (P,./P.)", (Ref. 14).

It is clear that using the vehicle VCO output as a carrier
reference introduces into the down-link an additiona’
component of noise; however, incorporating this measure-
meni into the system allows one to perform, with extreme
accuracy, a two-way doppler measurement. Thus, we
postulate a mathematical model of the system so as to
include this up-Ink jitter component, hence, the two-way
dopnler measurement. However, as we shall see, adjust-
ment of certain parameters will immediately alleviate this
up-link RF jitter. The down-link channel (assumed to be
statistically independent from the up-link channel) fur-
ther perturbs 7 (¢) by inserting an unknown phase shift 4,
and additive white Gaussian noise n, (t) of single-sided
spectral density of N,.. w,Hz. Thus, the reference receiver
observes

£(t) = (2P,)% sin [wst + (COS™ My) Xiz (£) + B, + 6.]
- n, (t) (7)

The ground receiver tracks the carrier component in
£ () for the purpose of measuring the doppler and demod-
ulating the data. We denote the output of the reference
VCO by

v (t) = (2)%cos (wst + 02) (8)

where 8, is the estimate of phase of the observed carrier
component. Multiplying ¢ (f) by v (t) and neglecting the
double-frequency components, one may show (Ref. 14)
that

y(t) = (L — m) )4 %, (¢)cos g +m2(t)  (9)

where ¢, =0, + 8, - 8, is the reference syscem phase
error and is assumed constant for the duration T, of the
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signals x;. (t). Again n’, (¢) is asily shown to be white with
a single-sided spectral density of N.. w/Hz.

To recapitulate, we see that the design engineer has
at his disposal several communication parameters. For
the up-link we have the total power radiated P,, the
single-sided noise spectral density N, up-link data rate
R, =T,}, vehicle carrier tracking loop bandwidth w,,,
and modulation index m, = (P,,,/P,)'2. The corresponding
down-link parameters are P., N,,, -R.=T;!, w.,, and
m, = (P,./P.)'2 In the subsections that follow, we relate
these parameters together and determine that value of
m, (n = 1,2) which minimizes the probability of error
P;(n)(n = 1,2), say Py, (n), for a fixed data rate-to-carrier
tracking loop bandwidth ratio, say -R,/w.. (n = 1,2). Also
the losses, in signal-to-noise ratios (SNR), due to noisy
demodulation references are determined.

3. System Phase-Error Distribution

The probability distribution for the subsystem phase
error is of great importance in specifying the performance
of the two-way link. In fact, the distribution of this phase-
error has been previously characterized (Ret. 14), and
its probability density function is conveniently repre-
sented by

I, ( 'al + a, exp (’4’-’)')
271y (@) Lo ()

P(¢.} = || <= (10)

where I,(x) is the imaginary Bessel of zero order and
argument x, and «, and «, are related to the up- and down-
link parameters. The validity of using this distribution as
a model for the phase-error distribution has been given in
Refs. 14 and 15.

In passing we point out that the loop filter, which is of
greatest interest in practice, is of the proportional-plus-
integral control type, i.e.,

1 + Tzﬂs.

F”(s) = l + 1'1"3’

n=12 (11)

If one relates the basic parameter of the carrier tracking
loops, i.e., the loop bandwidth tw.,, n = 1,2, to the time

*The subscript n = 1 refers to parameters, filters, etc. in the vehicle
system or one-way operation; while n =2 refers to parameters,
filters, etc. in the reference system.
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constants in F, (s), we have

Pu " nTin
r, = .<_—)—....l—(.7_' <12)

2 ]
Tin Tin

r, + 1

- —
Wiy = J-Bl,n '—

where K, is the equivalent simple-loop gain which de-
pends upon the VCO constant and the multiplier constant,
Ref. 16, p. 30. The loop bandwidth B,,, is defined as

1 [/~
wLnZZBLn:t,T IHn(S)I:'dsl n:l,2
o (13)
where
r, +1
1+ ( 1B, )s
H"(S)“H oty 1 r,.+1)"s.:; n=12
‘ 4Blm $ rn 4Bl,n '
(14)

and H, (s), n = 1,2 is the closed loop transfer function of
the carrier tracking loops in linearized form. The transfer
function of the ground receiver’s carrier tracking loop is
given by Eq. (14) with n = 2, and that of the spacecraft’s
carrier tracking loop is given by Eq. (14) with n = 1.

The parameters «, and «., which serve to characterize
p($:), aie given by

N _2m‘;’Pl . 1 _ 2mZP.'__ °8.R
Y Nﬂlwbl K(ﬁ, fa, ;B) * N,we, - M0t
(15)
where
_ “Re _ 1 . 2P.Ty,
5. = Wi - Tywp» R. = N. (16)
defined by
r,BG?
K(r,r:,B) = G%I)Tz
r: trnrB(l+8)+ (0 +8)+ng
fg/r, + rgﬂ + ﬁz (rz + 1’1 - 2) + flﬂa + 7154/"2
(17)
with

- B[,1 (fz + 1)
BLZ (rl '{“ 1)
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and G is the static phase gain of the spacecraft receiver,
which is determined by the ratio of the input frequency
to the output frequency st the spacecraft. In practice,
the values of B and G are chosen such that K (r,, r., B) is
approximately unity; hence, a, is approximately the SNI
existing in the carrier tracking loop bandwidth.

4. Losses Due to Noisy Demodulation References
in One-Way and Two-Way Systems

Before proceeding with the problem of power alloca-
tion, we determine the RF losses due to a noisy carrier
reference in one-way and two-way telemetry links. For
two-way links, the significant contributing factors in this
loss are the noise in the ground receiver’s demodulation
reference 4, and the phase modulation existing on the
vehicles carrier produced by the up-link additive noise.

a. Losses in one-way links. One-way telemetry recep-
tion, i.e., reception when the vehicle is operating with an
auxiliary oscillator as a frequency reference, has been pre-
sented and discussed in Refs. 17 and 18. For the sake of
completeness, we include a graph (Fig. 13) which enables
the design engineer to evaluate such losses when the ref-
erence phase-error is constant over a bit period. These
results are obtained by numerically integrating the expres-
sion, which specifies the bit-error probability P, (1) as a
function of the SNR in the data, say R4, and the SNR in
the reference system’s carrier tracking loop. This bit-error
probability has been shown, Ref. 14, to be given by

Py (1) = lim [ rrP(¢=) Erfc [(2Ra)* cos ¢.] d. (18)

a» o T

ng—)O

where
Erfc (x) = ﬁ / " exp (—y?/2) dy (19)

Eq. (18) has been plotted in Fig. 14 for various val-
ues of the parameters R4 = (1 — mi)R, and . Here
a« = 2P, /Ny wy, = 2m;iP,/Ns,w., denotes the SNR in the
carrier tracking loop, and R, is the SNR in the data
channel. The above results indicate the importance of
establishing the proper SNR in the carrier tracking loop.
If this is not done, a significant loss over the theoretical
performance is quite pronounced.

b. Losses in two-way links. For two-way systems, the
probability that the data detector will err in its decision
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may be evaluated following the procedure given in
Ref. 14. In fact, it is easy to show that the average bit
error probability is given by, Ref. 14,

Py (2) = / " p(¢2) Erfe [((1 — m3) Ro)% cos ¢,] ds
N (20)

This equation has been plotted in Figs. 15-17 for various
values of the parameters o, and «,, where (1 — m3)R, =
R, is the SNR existing in the data channel. These figures
show the effect of varying «, (which, in practice, is ap-
proximately equal to the SNR existing in the vehicle’s
carrier tracking loop) when the SNR in the ground
receiver’s carrier tracking loop e, is held constant. Thus,
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the losses due to noisy carrier references are clearly mani-
fested. These figures also indicate that the selection of
the modulation factors m, and m, must take these into
consideration. This selection is the subject of the next
subsection.

5. Power Allocation and System Performance

In this subsection we treat the problem of dividing the
power between the carrier component and the sidebands
so as to minimize the probability of error. Simple formulas
will be developed which allow the design engineer to
compute the modulation factors m,, n = 1,2 without the
aid of a digital computer. Finally, design curves will be
given which allow one to make engineering tradeoffs and
carry ont the particular design.
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a. Allocation of power in two-way systems. From
Eq. (20) it is apparent that any attempt to find the value
of m,, which minimizes P, (2) by the method of differen-
tiation, immediately presents formidable difficulties; how-
ever, the surface generated by Eq. (20) has been studied
on the IBM 7090 computer. The procedure used by the
machine was to search for that value of m, which mini-
mizes Py (2) and then evaluate P (2). The results of these
computations are illustrated in Fig. 17. This figure is a plot
of the optimum value of m3, say ms,, versus R, for various
values of 8, with «, = 9db. This value of a; corresponds
to a near threshold condition in the spacecraft’s carrier
tracking loop. Fig. 18 represents a plot of the system error
probability versus R,, for various values of 8., when the
power is optimally divided between the carrier and side-
bands. Notice from this figure that the Py (2) versus R,
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characteristic exhibits a bottoming behavior, i.e., the sys-
tem exhibits an irreducible error probability. This be-
havior is due to the presence of additive noise on the
up-link and may be eliminated by using a clean carrier
reference in the vehicle or by increasing the up-link SNR
to a point where the phase-jitter in the vehicle’s carrier
tracking loop becomes negligible.

The irreducible error probability, say Py, (2), may be
obtained from Eq. (20) by letting N, approach zero, i.e.,
a; approaches infinity, and R, approaches infinity. Taking
the limit, we find that the integration is zero in the interval
where cos ¢, = 0 and becomes

. [* €xp (a; cos ¢,)
Po ()= [ ROy, g
287
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where cos ¢. < 0. This function has been studied in

SPS 37-37, Vol. IV, p. 267.

In practice, it is convenient to have an approximate
formula which specifies the optimum, say m3,, value of
the modulation factor as a function of the various system
parameters. This approximate formula is easily obtained
by assuming that the SNR existing in the individual
carrier tracking locps is large enough that the linear PLL
theory applies. In this case, the probability density p (¢).
of the phase-error becomes Gaussian with variance o}, =

Pa(2)=

1 o0
(2703 )% f _op

_
203

109 ]
a = NOIF;L" k' (B)=9d0 H
%\ __ b 2
107! \ \ \& L
AN \ #2° 7
\\ \ b2
; \% \NEARN
W
0-2 \\\ | I 2=cl)..g
° e
~ Y\ | [ — 1000
e,
Ny . : -
SR NN
\ N \\\
\ \\:\\\\\
eSS
‘\ B
‘\
|0—5| 10 100 1000

2" Moz

Fig. 18. Minimum error probability vs R; for various
valves 8, with a; = 9db

a;' + o' and the system error probability of Eq. (20)
reduces to

Differentiating Eq. (22) with respect to m, and equating the result to zero yields

)

E [exp {-< R, (1 = mi)

2
. m282R2<1 = mg)%

cos'-'(

(a;l + m'_':82Rz)%

(a* + m38:R,)%
AR}

()

y sin (
* ((a;

14 m&&,R,)’r‘l)]

Yy

Yy
d;l + m§8gﬂz)"“>

0

:' Erfe [((1 — m2) R,)% cos ¢.] d¢,

(22)

(23)
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where E (+) denotes the mathematical expectation of the quantity in the parenthesis, and y is a random variable which
is normal (0, 1). Carrying out this expectation and solving for the value of m3 which produces the minimum, gives

. 8, (R,—1)—a (1+28.)
mzn =

28.R. (1 + 8.)
4 {[8,(R:— 1) — &' (1 +28.))° + 45, (1 + 8.) [8.R. + o' (R: — «;')] }'% (24)
28.R. (1 + 8.)
This approximate formula, of course, is good in the region where the linear PLL theory applies.
b. Power allocation in one-way systems. The mathe- 1.00
matical model, which we have established for two-way
systems, reduces to the mathematical mode] for one-way —
systems if one allows B,. to approach zero and replaces I
all subscripts on parameters which possess a two by one. .\\\ ™ 3 =
In this case, thc expression for the average error prob- \7 \\j
ability becomes \\ F\\\
\ -\.\3.
i RN Y \\QJ
Po(t) = [ p () Brfel( = m) Rocos o) di, T~
- \ —10_|
(25) w2 oi0 — P
3 - —
where p (¢,) is given by [~ 30 |
N \
e ~——50
__exp [mi8,R, cos ¢,] . _
P() == T.(mi5.R) |6:[== (26) 100
and
5 = R _ 1 R = 2P\Ty, @) o.ou;L 2 PR 10 20 T
Vwy Taw’ ! N, R
I

As before, the value of mi which minimizes P (1) in
Eq. (25) has been found by use of the IBM 7090 com-
puter. This value, say mi,, is plotted in Fig. 19 versus R,
for various values of 8. The error probability correspond-
ing to this minimum, say Pg_(1), is illustrated in Fig. 20
versus R, for various values of 8,.

Again an approximate formula which specifies the opti-
mum mi, as a function of the various system parameters
is of interest to the design engineer. This approximate
formula may be obtained from Eq. (24) by letting o,
approach infinity and replacing all parameters with sub-
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Fig. 19. Optimum modvlation factor m;, vs R, for
various values of the parameter 8,

scripts two by ones. Thus, from Eq. (24) we have with

w = o0,

(Ri — 1) + (R — 1)* + 4R, (1 + 8,))*
2R, (1 + &)

mi, = (28)

This approximate formula is plotted in Fig. 21 versus R,
for various values of 8, and may be used to compare with
the exact results given in Fig. 16.
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C. Combinatorial Communications: On The
Number Of Information Bits In Certain
Cyclic Codes, R. McEliece

1. Introduction

Any binary group code can be described by its genera-
tor matrix whose rows may be thought of as a basis for
the vector space which constitutes the code. It is always
important to know the number of information bits in such
a code. However, if the code is defined only by its gen-
erator matrix, determining the number of bits is difficult,
because it is equivalent to finding the rank of the genera-
tor matrix. However, when the code is cyclic, it frequently
happens that the generator matrix is what is called a
circulant, a.d in this case it is possible to greatly simplify
the task of finding the number of information bits. [n sub-
section 2 an algebraic method for calculating the rank of
a circulant will be developed, and in subsection 3 an appli-
cation to the so-called quadratic residue codes will be
given.

2, Algebraic Theory

Definition: An n X n matrix with entries in a field F
which has the form

a a a, a,

an a, a; " apq

Apy G, Gy " " Qn,
A=

KA a a, " - a6, |

is called a circulant matrix.

For our applications, it will be necessary to compute
the rank of a circulant matrix. The following theorem
is useful:

Theorem 1: Let F [x] be the ring of polynomials with
coefficients from the field F. Define the polynomial
Aix)=a, +tax+ax*+ -+ +ax"". Let r(x) =
ged (x* — 1, A (x)) in F [x]. Then the rank of A is equal to
n-degree (r(x)), where A is the circulant whose first row is
(a,,a,, - - - ,ay).

Proof: In F [x] let I be the principal ideal generated by

the polynomial x* — 1, and denote by F, [x] the quotient
ring F [x]/I. Since F [x] is a principal ideal domain, so is
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F, [x]. The elements in F, [x] are regarded as polynomials
modulo x* — 1.

Let us view F,, [x] merely as a vector space of dimension
n over F. Then the elements A (x),x*A(x), - - - , 2" A(x)
generate a subspace 7). Furthermore, the dimension of 7]
is precisely the rank of the matrix A. But /1) is actually an
ideal in the ring F, [x]. This is because the given basis for
771 is only permuted when multiplied by the element x,
and x generates the whole ring F, [x]. Hence /7 is the
principal ideal (A (x)). We now need the following:

Lemma 1: 1f P¢F, [x], then (P) = (ged (P, x" - 1)).

Proof: We return temporarily to F [x], where the ideal
stiucture is clearer. Two polynomials P and Q generate
principal ideals (P) and {Q), and (P) 2 {Q) if and only if
P divides Q. We suppose tha* Q is the kernel of a ring
homer.iorphism 6: F [x] - F [x]/(Q). Then the usual sort
of calculation shows that 6 (P) = PUQ/Q. But in F [x],
PUQ is principal and is generated by ged (P, Q). Our
lemma is the case Q = x" — 1.

Lemma 1 allows us to complete the proof of Theo: a1,
for it shows that (A(x)) = (ged (A (x),x” — 1)). Suppose
ged (A (x), x* — 1) = B(x). Then B(x) divides x" — 1. It is
clear that the codimension of (B) in F,(x) is the degree
d of B, since 1,x, - - -, x!" are linearly independent
(mod B), but there can be no larger set. Thus, the dimen-
sion of (B) is n — d, as esserted. Theorem 1 is proved.

3. An Application

If p is a prime, the quadratic residue codes we shall be
interested in can be described by their generator matrices
Qp, which are circulants over G F [2]. These matrices
are, therefore, completely described by their first rows
(av,a,, * * - ,a,,). Using the familiar Legendre symbol
(a/p), we describe the first row:

a, =0

1 if(i) = +1
P

g =
0 if(i) = -1
p

The code is a cyclic linear code with block length p,
and the number of information symbols is the rank of the
matrix Q,. Since the assignment a, = 0 was arbitrary, we
shall be intercsted in not only the rank of Q, but also Q’,

9
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which is also a circulant but has a, = 1. We now define
the polynomials

Q) =0,(0) =S ar

A oo

In view of the lemma of subsection 2, we shall be interested
in finding the degree of the polynomials (Q (x), x” + 1) and
(Q(x) + 1,x" + 1) for various odd primes p.

Let P(x) =x"*+ 22+ - -+ +x+ 1. Thenx* + 1=
(x + 1) P(x) over GF (2). It is easy to determine whether
or not x + 11 a factor of Q, (x) ; if the number of nonzero
coefficients is even, it is; if the number is odd, it is not.
It is, therefore, sufficient to compute the degree of (Q (x),
P(x)) and (Q(x) + 1, P(x)). As a final preliminary, set
N(x)=P(x) + Q(x) + 1; i.e., N(x) indicates the non-
residues of p.

Lemma 2: Let a be a residue (mod p). Then (mod x* +1)

0 ) if(-“-): +1

P
Q@) =
N (x) if(%): _1
N(x) if(%) = +1
N (x9) = :
Q@ if (;) =1
Proof: The polynomial
Q(xa) (mde’ + 1) = 2 yka(mod p)

(k/p)=+1

But as k runs through the quadratic residues, ka either
runs through the quadratic residues or through the non-
residues, according to whether (a/p) = +1 or —1. The
proof for N (x) is the same.

We are now in a position to compute the degrees of
(Q(x),P(x)) and (Q(x) + 1,P(x)), but we must first dis-
tinguish between two cases.

Case I: (2/p) = —1; i.e., p == +3 (mod 8). By Lemma 2,
N?(x) = N (x*) = Q (x) (mod x* + 1), and Q*(x) = N (x)
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> (mod x" 4+ 1). We may replace the modulus x” + 1 by
P(x) in both cases, and obtain:

(x),Q(x) + N(x) +1)
(x), N (z) + 1)
(x), Q% (x) + 1)

= constant

i

(Q(x),P(x)) = (Q
Q
(Q

(Q(x) + LP(x) =(Q(x) +1,Q(x) + N(x) + 1)
=(Q(x) + 1,N(x))
=(Q(x) + 1.0°(x))

= constant

Here in both cases the degree is zero, and so the rank
of the matrix Q is either p or p — 1, depending upon
whether p=+1or —1 (mod 4). (The rank of Q" is p -1
or p.)

Casell: (2/p) = +1;i.e, p= =1 (mod8). By Lemma 2,
Q: (x) = Q(x) (mod x» + 1). Consequently, it F is a split-
ting field for x* + 1, we see that Q(8) — Oor 1forall §¢ F.
Thus, each root of P(x) is either a root of Q(x) or of
Q(x) + 1. Therefore,

P(x) = (P(x),Q(x)) (P(x),Q(x) + 1) (modx”+1)

= (P (), Q () (P (x), N (x)) (mod x? + 1)

Now let e be any nonresidue of p, and suppose that 8 is
a pth root of 1 in F with Q(8) = 0. Then by Lemma 2,
N (8°) = Q(8) =0. Similarly, N (8) =0 implies Q (8¢)=0.
Thus, there are as many pth roots of 1 with Q(8) =0 as
there are with Q (3) = 1. Hence

degree (P (), Q (x)) = degree (P (x), 0 (x) + 1) = P_;—l

So in this case the rank of the matrix Q is either (p + 1)/2
or (p—1)/2, according as p=1 (mod 4) or p==—1
(mod 4). The rank of Q’ is either (p — 1)/2 or (p + 1)/2
in this case.

In both of these cases, the codes corresponding to the
higher dimensions (p and (p + 1)/2) may be obtained from
those of lower dimension (p — 1 and (p — 1)/2) by the
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addition of the all-ones vector to the code word. We state
these resnlts in a theorem:

Theorem 2: Let p be an odd prime. We define a quad-
ratic residue code of length p in terms of its gen-
erator matrix (), which is a circulant with first row

(av,ay, - - - ,a, ), where
51 if p=— 1(mod 4)
a, =
10 if p= +1(mod 4)
1 if(ﬁ) _—
p
a; = k=12 - ,p—1

0 if(5> _—
P

Then the number of information bits in the code is p — 1
if p==+3(mod8) and (p — 1)/2 if p = +1(mod8). We
may increase the number of bits by 1 in each case by
adjoining the all --1’s vector to the code.

4. Conclusion

In subsection III we applied Theorem 1 to the quadratic
residue codes. It should be emphasized, however, that
while it may not often happen that we will be able to
calculate code dimensions in a theoretical way, Theorem 1
is still of use. For Theorem 1 reduces the difficult general
problem of calculating the dimension of a cyclic code to
the computationally simpler problem of determining the
greatest common divisor of two polynomials. This is, of
course, easily done by means of Euclid’s algorithm, which
is very efficient and is very easy to program on a digital
compnter.

D. Combinatorial Communications: A Rational
Algorithm for Marsh’s Cubic
Transformation, S. W. Golomb®

1. Introduction

Given an irreducible polynomial f(x) of degree n over
GF (2), it is frequently desired to generate others of the
same type. The two transformations

T:f(x)>f(x+1)

‘Prepared under contract 851076 with the University of Southem
California, Department of Electrical Engineering, Los Angeles,
Califomia.
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and

U: f(x) > x"f (1/%)

have the property that both irreducibility and degree are
preserved. Also, the relationship of the roots before and
after is clear. (T:a—>a 4 land U: a— « ') However, T
and U together generate a group of only six transforma-
tions, which thus severely limit the number of new poly-
nomials obtainable from a given one in this way.

In Ref. 19, March introduces the “cubic transformation”
M:f(x) = f(x') f (ox/) f(0°x'/%) = £*(x)

where o' = 1. It is casily seen that the roots of f*(x) are
the cubes of the roots of f(x). In particular, for odd degree
n, 2" — 1 is not divisible by 3, and the transformativn M
preserves not only irreducibility but also the degree of
primitivity of the roots. In a variety of cases, iteration
of M enables one to generate all irreducible poly-
nomials of degree n from a given one. (These degrees
include n = 3,5, 7, 13, 17, and 19.)

The purpose of this note is to describe a “rational”
algorithm for effecting the transformation M, which is
useful in preparing tables” (Ref. 20). The procedure is
rational in the sense that « and »* do not appear in the
final result ' (x) nor in the intermediate computations.

2. The Algorithm

Divide the exponents of the terms in f(x) into three
classes: A, B, and C, according to the residue class of the
exponent modulo 3. We produce the set of exponents for
f* (x) from those for f(x) by the following 3 steps:

(1) Copy the exponents of f (x).

(2) Adjoin all numbers (2u, + u.)/3 where u, and u.
are distinct exponents of f(x) in thc same residue
class mudulo 3.

(3) Adjoin all numbers (¢ + b + c¢),3 whereac A, beB,
and ceC.

Any exponent for f*(x) which is produced an even
number of times by these operations must be discarded,;
if produced an odd number of times, it should be retained

'S. W. Golomb, L. R. Welch, and A. W. Hale’s memorandum On the
Factorization of Trinomials Over GF(2), Jet Propulsion Laboratory,
Pusadena, California.



(once). If any of the three categories A, B. C is empty, then step (3) is vacuous. If a category has less than two members,
it does not contribute to step (2).

Example 1. Let f(x) = x* - x* + 1. Then the categories are

A B C
2,5
To produce f*(x), we follow the three steps:
A B C
step 1 0 2,5 cony
X245 2x5+42
step 2 3 4 L= = 2z
stey 3 , 3
step 3 ) vacuous
mod 2 sum 0,3 4 2.5

Thus f*(x) has the exponents 0,2,3,4,5 and
fi(x)=x+x+x-+x41.

Examplz 2. We iterate the transformation, this time sta; ting with f (x} = x* + x' + x* + x* + 1. To form f*(x), we fol-
low the three steps:

A |l B | C
Copy
sepl 03 | 4 | 25 545,43 2:340 2:2+5 2.5+ 2
step2 3 | 14| 2 3 © T3 © T3 © T3
step3 33 | 4 2 0+4+2 0+4+5 34442 3+4+5
mod 2 sum 0 1,4 2,5 3 3 3 3

Thus, f*(x) =x* +x*+ x* +x + 1.

The reader is invited to verify f**(x) = x* + x' + 1.

3. Proof of Algorithm
We wish to show that f*(y*) = f(y) f (sy) f («°y) can be obtained in the manner just described, where y = x'/*, Write

f()=f.(y) + £ (y) + f:(y), where f;(y) contains precisely those terms of f(y) with the exponent congruent to i mod-
ulo 3. Then

f(oy) = fu(y) + of: (y) + &?f: (y)
and

f(w'y) =1a(y) + &*fi(y) + wfe(y)
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Thus,

friyd)="(f tht L2+ ofi 4 o) (fo + o' + of.)
= (it fie f) b (Lt e o) (ffi +fifi + LA

1 1 1
+ fofi o+ fife 2 fif) R .
fif: + fif. 4 fifo) L v o | fuffs
1 (1)" (4] I
= (f.!. + f: + f.) + fﬂflf.
since 1 3 o4 w° =0, while the determinant is 1. (The

matrix is nonsingular by linear independence of the rows,
and the determinant is rational by symmetry in » and »*.)

The exponents in f., f,, and f. are those in the classes A,
B, and C, respectively. The exporents of f are: (1) the
triples of the exponents of f,, and (2) the sums 2u, + u.,
where u, and u. are distinct exponents of f,. The exponents
of f.f.f. are: (3) all sums of the forma + b + ¢, withae A,
b B, and c¢ C. Allowing for y* = x, these are the three
steps in the algorithm for finding f* (x) from f (x).

E. Combinatorial Communications: On
Enumerative Equivalence of Gioup
Elements, S. W. Golomb* and A. W. Holes"

1. Introduction

Let G be a finite group (of order |G|) operating on a
finite set S. By a well-known formula of Burnside (Ref. 21),
widely exploited since the appearance of Polya’s paper
(Ref. 22), the number C of orbits (equivalence class=s of
elements in S under the oj.crations of G) is given by

- L
C=rgp ) 1@ 0

where I(g) is the numbwr of fixed points of S under the
group element g. It is well known (Ref. 23) that, consider-
ing S as a representation of G, I(g) is a group character.
Thus, if g, and g. are conjugate elements of G, I (g,) =
1(g,) for all representaticns S.

*Prepured under JPL contract 851078 with the Urivenity of South-
C“:lmm Department of Electrical Engineering, Los Angeles,

*Consultant from the University of California, Los Angcles,
California.
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The purpose of this article is to characterize the cir-
cumstances under which two group elements, g, and g,
of the abstract group G satisfy I(g.) = I(g.) for every
representation S of G, Two group elements with this
property will be called (weakly) enumeratively equivalent
(this is clearly an equivalence relation oa G), and in apply-
ing Eq (1) it suffices to compute I (g) only once for each
enumerative equivalence class in G.

We define two group elements, g, and g., of the abstract
group G to be stroagly enumeratively equivalent if they
have the same se* of fixed points, no matter what repre-
sentaticn of G is considered. We call two group elements,
g, and g., related (and say g, is a relative of g.) if the -
generate the same cyclic subgroup of G, i.e., if each is a
power of the other. The characterization theorems for
strong weak enumerative equivalence are as follows:

Theorem I. Two elements, g, and g., of an abstract
group G are strongly enumeratively equivalent if and only
if g, is a relative of g..

Theorem 2. Two elements, g, and g., of an abstract finite
group G are weakly enumeratively equivalent if and only
if g, is a conjugate of a relative of g..

Theoiem 2 is no longer true if the word “finite” is
omitted. We shall indicate the appropriate inodifications
in this case. Finally, we shall discuss those groups G in
which “g, a relative of g.” implies ‘ g, a conjugate of g,,”
and vice versa.

2. An Example

In Fig. 22, the points a, b, ¢ are the vertices of an equi-
lateral triangle, and the line df is perpendicular to the
triangle, with e as the midpoint of both the segment df
and the triangle abc. On the set S = {q,b,¢,d,e,f}, we
have a group of operators G = (A, B,C,D,E, F), wheie
A, B, and C are 180-deg rotatiors of S »round the indi-
cated medians of the triangle, D and F are the +120-deg

Fig. 22. The diredral grovp




rotations of $ about the perpendicular line df, and E is the
identity operator. (Abstractly, G is the same as the di-
hedral group of the cquilateral triangle and the symmetric
group on three letters.) The fixed points are listed and
counted in Table 2.

Table 2. Fixed points

Group Fixed points I g}
element
E a,b,c de,f 6
A a, e 2
B b,e 2
C c e 2
D doe,f 3
F de,f 3

Formula (1) says that 1/6%1(g), which is 3, should
equal the number of orbits. It is clear that the orbits are
{e}, {a,b,c}, =nd {d,f)}. Since D and F are related, by
Theorem 1 they must have the same fixed points (viz.,
d, e, and f). The operators A, B, and C are not related
and have different sets of fixed points. However, since
they are conjugate, by Theorem 2 they all have the
same I {g).

By Theorems 1 and 2 respectively, ‘he strong enumer-
ative equivalence classes in G are {E}, {A}, {B}, {C},
{D,F} and the weak enumerative equivalence classes
are {E}, {A,B,C}, and {D, F}. The example verifies that
for this group, the classes are certainly no larger than
allowed by the theorems.

3. Strong Enumerative Eq' :alence

Lemma 1. If g, is a power of g., then every fixed point
of g, is also a fixed point of g,.

Proof: Let s, be any fixed point of g., so that g. (s,) = s,
and let g, = g%. Then

g (8) =g3(s0) =828 "~ 82(80) =80

Lemma 2. If g, and g, are related elements of the group
G, then they have the same set of fixed points in any
representation S of G.

Proof: g, and g, are related if and only if each is a power

of the other. Then by Lemma 1, if they are related, they
have the same fixed points.
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Lemma 3. If ¢, and ¢. are nonrelated elements of G, there
exists a representation S in which g, and g. do not have
the same set of fixed points.

Proof: Construct S as follows: Let all the cyclic subgroups
of G, and all their left cosets, be the elements of S. Let
G operate on S by left multiplication. (The effect of a
group element is to permute a subgroup and its cosets.
"Tence, S is a valid representation of G.)

If g, and g. are nonrelated elements of G, they do not
generate the same cvclic subgroup. Hence, there is a
cyclic subgroup H containing one (say g,) but not the
other. As an element of S, H is then a fixed point of g,
but not of g..

Theorem 1. Two elements, g, and g. of an abstract
group G, are strongly enumeratively equivalent if and
only if g, is a relative of g..

Proof: The two halves of this theorem are Lemmas 2
and 3, respectively.

4. Weak Enumerative Equivalence

We need several lemmas.

Lemma 4. If g, is a conjugate of a power of g., then
I(g,)=1(g.) for every representatior. S of G.

Proof: By Lemma 1 of the previous section, it suffices to
show that the function I is constant on conjugate classes
of G. But this is proved in (Ref. 23) Theorem 3.

Lemma 5. If g, is not a conjugate of a power of g, then
there is a representation S of G in which I(g,) <1(g.).

Proof: Let H be the cyclic subgroup of G generated by g,;
let S consist of H and its left cosets; and let G operate
on S by left multiplication. Then I(g,) =1, because g,
leaves H fixed. On the other hand I(g,) = C, because if
& had a fixed point in S, say mH, we would have

g (mH) = mH

(mgim) = H

implying that m-'g,m, a conjugate of g,, is in H, and
hence is a power of g,. This contradiction proves the
lemma.

Lemma 6. Two elements, g, and g, of an abstract group G
are (weakly) enumeratively equivalent if and only if each
is a conjugate of a power of the other.
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Proof: This follows immediately from Lemmas 4 and 5.

Lemma 7. Let ¢, and g. be elements of finite order in a
group G. Then the following are equivalent:

(1) Each of g,, g. is a conjugate of a power of the other.
(2) g. is a conjugate of a relative of g..

Proof: 1t is clear that assertion (2) implies (1). To show
that (1) implies (2), we observe that condition (1) implies
both that (0 is the order function) 0(g,)<0(g.) and
0(g)=0(g.). Hence, g, and g. have the same order.
We know that g, = x 'g"x for some x. Here g, and g"
have the same order. Hence, g. and g" have the same
order and, therefore, generate the same cyclic subgroup,
i.e., g" is a relative of g.. This completes the proof.

Theorem 2. Two elements, ¢, and g., of an abstract finite
group G are (weakly) enumeratively equivalent if and
only if g, is a conjugate of a relative of g..

Proof: Since every element of a finite group is of finite
order, the theorem follows from Lemmas 6 and 7.

The following example shows that the finiteness hy-
pothesis in Lemma 7 (and hence in Theorem 2) is nec-
essary.

Example: Let G be the split extension of Q X Q (when Q
is the rationals under +) by an infinite cyclic group gen-
erated by x, with x-! (g, b) x = (2b, 24). Then (1,0) is con-
jugate to the “power” (0,2) of (0, 1), and (0, 1) is conjugate
to the “power” (2,0) of (1,0), but (3, 0) is not a conjugate
of a relative of (0,1).

5. Considerations of Implication

In the light of the previous results, it is interesting to
ask the following two questions:

{(A) For which groups G does “g, is a conjugate of g,”
imply “g, is a relative of g,”?

(B) For which groups G does “g, is a relative of g,”
imply “g, is a conjugate of g.”?

Question A is easy to answer.

Theorem 3. Let G be an abstract group. Then the follow-
ing are equivalent:

(1) a. is a conjugate of g, implies g, is a relative of g,.
(2) All subgroups of G are normal.

Proof: Assume (1). Then if H is a sub .oup of G, h is in H;
and g is in G. We have g-* h g is a relative of i and, hence,
is also in H. Thus, H is normal. Conversely, suppose (2) is
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true. If g, is a conjugate of g., then, since the cyclic sub-
group generated by g, is normal, g, must be a power
of g.. Similarly, g. is a power of g,, and the proof is
complete.

Groups in which every subgroup is normal are called
Hamiltonian groups, and have been completely classified
(Ref. 24). The 1esult is this: a group is Hamiltonian if
and only if it is either abelian, or the direct product of
the quaternion group of order 8 by an abelian group
ot exponent two by an abelian group in which every
element has finite odd order. This completes the answer
to question A.

Question B is much more difficult to answer, and will
not be dealt with here. We only point out the following
facts, without proof: no group of finite odd order satisfies
the condition of question B; any abelian group of expo-
nent two does satisfy the condition; the quaternion group
satisfies the condition; and all symmetric groups satisfy
the condition.

F. Information Processing: Arithmetic Decoding
of Cyclic Codes, ll, G. Solomon

1. Summary

In SPS 37-42, Vol. 1V, pp. 205-208, we introduced sim-
plified mechanizable arithmetic decoding of maximal
length shift register codes and cyclic Reed-Mueller Codes.
The number of computations was proportional to the
number of information bits. This article extends these
procedures for more general BCH cyclic codes.

2. Main Result

Let k be even. Consider the BCH code generated via
linear recursion by the polynomial

fx) =&+ Dfix)fs(x)

where f,,f, are the irreducible polynomials of « and o*
over GF (2), a primitive. For these codes of length 2¥ — 1,
and usral dimension 2k + 1 (only exception: k = 4) we
have a very simple decoding procedure which will cor-
rect [(2¥ — 1)/8] — 1 errors:

Example.

(15,7) BCH code w:ll correct 2 errors with this pro-
cedure.

(63,13) BCH code will correct 10 errors with this pro-
cedure.
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(255, 17) BCH code will correct 42 errors with this pro-
cedure.

This arithmetic procedure will correct, in general,
slightly fewer errors than the usual BCH error currecting
procedures, but is much simpler in mechanization and
concept.

3. Mefhod

Let a=(a,)i==0,1, - - ,2—~2 be the received
vector.

(1) Perform the permutation ¢ (a) by mapping x>x+1,
xe GF (2¥), as in SPS 37-42, Vol. 1V, pp. 205-208.

(2) Let Ta be the cyclic shift of @ by (2 — 1)/3 stages
to the right. Perform T ¢ (a), T?¢ (a).

(3) Compute the vector sum ¢(a)+T ¢(a)+T?¢{a)=b.

(4) Compute the weight » of b over all coordinates but
the Oth. Let o’ = /3.

(5) Add as mod 0 (ordirary arithmetic) to .

(6) If ' < (2¥—1)/(3+2), decode a, as 0. Otherwise,
decode a, as 1.

(7) Cyclically shift the received vector @ one stzge to
the right to obtain (a,,a., - - - ,a,).

(8) Perform (1)—(6) on shifted vector. Decode a,.
(9) Continue until all information bits are decoded.

4. Proof

For the codes described above, the vectors are given
by {g(a'); i=0,1, - - - ,2*—2} where (SPS 37-42,
Vol. 1V)

gx)=co+ Trex + Trdx®

a primitive, ¢, e GF (2), ¢« GF (2¥), d « GF (2!) where I}k
and 2! — 1 is the order of «".

The coordinates 1 + a*, 1 + al2*-1/314, ] + g?l(z*-1)/31+8 =
Bi,Bi-, Bi» say, i=1, - - - (2¥~1)/3 — 1 are distinct in
GF (2*) and take on 2* — 1 values; also, (8; — 1)* = a¥,
etc. It can be shown that

g(B) +g(B*) +g(B*)

=co+ Trc(l) + Trd(1) = a,, if correct

We then have [(2¥ — 1)/3] — 1 determinations of a4, in
addition to the value of a, itself. Decode a, as 0 if the
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majority of these determinations is 0, and as 1, if the ma-
jority is 1. Note that, since k is even, (2¥ — 1)/3 is an odd
integer. Hence, a tie can not occur, and the decoding
procedure always produces an answer regardless of how
many errors were made.

One readily verifies that if at most (2¥ — 1)/6 — 1 errors
have been made, the majority decision is indeed correct.

G. Information Processing: Decoding Codes
Beyond the Bose-Chaudhuri Bound,
E. R. Berlekamp'’

It is known from combinatorial arguments that most
t-error cortecting Bose-Chaudhuri-Hocquenghem (BCH)
codes are capable of correcting many error patterns con-
taining more than ¢ errors, although no feasible general
algorithms for correcting correctable error patterns are
known. In certain cases, decoding words with ¢t + e errors
can be reduced to the solution of some simultaneous non-
linear equations in e unknowns (e > 0). Unfortunately,
feasible methods for solving these equations are known
only in a few special cases. The case of ¢ + 1 errors is
a particular example.

1. Introduction

In a t-error correcting binary BCH code of odd block
length N, positions of the code are associated with the
Nth roots of unity, which form a multiplicative subgroup
of the nonzeio elements of some finite field, GF (2*), of
characteristic 2.

The code is constructed in such a way that various
power-sum symmetric functions of the error locations are
available as parity checks on the received word. in par-
ticular, the t-error correcting BCH code is chosen so that
the power-sum symmetric functions §,,S,,S;, * - -, Sz
are available, where

Sj = 2 B¥
error
positions

The decoding proble.. is to find the S's given these S's.

In order to solve these equations, one usually proceeds
in two steps. The first goal is to construct the error

“Consultant from the Electrical Engineering Department, Uni-
versity of California, Berkeley, California.
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polynomial

o{x) = Feix* =T](1-- B)x)

J

The degree of the error polynumial is equal to the num-
ber of errors, and the roots of the error polynomial are
the locations of these errors. The coeflicients of the
error polynomial (the ¢,) are in fact the elementary
symmetric functions of the error locations. These ele-
mentary symmetric functions are related to the power-
sum symmetric functions by Newton’s Identities. As was
shown in a previous article (Ref. 25), Newton’s Identities
in a field of characteristic two are conveniently expressed
in generating function notation by the equaticn

S (x) ¢ {x) = Even (x)

where S (x) is the generating function of the S’s, given
by S{(x) =1+ 8;x + Sx* + S;x*, - - - ; ¢(x) is the error
polynomial; and Even (x) denotes some even polynomial
in x.

2. Finding o (x)

Typically, one is given only 1 + S,x + Sxx*2 +, - - -,
+ S.ex?t (ie., S(x)modx***'), and one wishes to find a
o (x) such that S *¢ = Even mod x**. This is most readily
done by an iterative process. We define a sequence of
successive approximations, ¢, ¢, ¢/, - - - ;and an
auxiliary sequence @,z @ - .. as follows:

ol = 0 =}

Then let A{™ be the coefficient of x*** in the power series
of S+o™. Now define

o™ = gM — A(ll)x-,.(")

(n)

Ag")

if A™ =0 and if deg o™ = deg r*™

T(nu) _

x2z™ if A™ = 0 or if deg o'™ > deg+™
One can readily verify that, for all n,

S+o™ = Evenmod x**

S+*+™ = Odd + x*" mod x"+!
dego™ + degr™ =2n

o™ (0) =1
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By further arguments, it was shown by Berlekamp (Ref.25)
that if p (x) is any polynomial whatever #¢'™ (x), and if
either deg p < deg o' orif deg o' <= deg p = n, then

S+ p# Evenmod x*"

Consequently, if there are no more than : errors, this
iterative procedure terminates with the correct error
polynomial, ¢/" =g,

We can express the (n + 1)st, (n +2)nd, - - - ,(n+k)th
approximations in terms of the nth approximation by the
formulas

~ . ~
0,(n+k) _ f(k,n)o(n) + f(k,n),r(n)

~ A
(k) — g”""’o‘”’ + g(k.n).,.(u)

Here ?"‘v"’ and 7"‘-"’ represent the even and odd parts of
the polynomial f¢*-®; g% m andg *™ represent the even
and odd parts of the polynomial g* ™", From the previous
definition of the iterative algorithm, one can readily verify
that the polynomials f and g must satisfy

f(O.n) = g(o,n) =1

f(ku,n» -_ f(k,n) —_ A(Mk) X g(k,n)
1

xf(k,n)

g(kﬂ.vl) = A::’:

if A" = 0 and deg o™ = deg r™
ng(,.-, 2 if A(‘nok) = Qorif deg gk > deg F{nek)

In the common case where deg o™ = deg ' = n, we have
deg om+k = + deg f""”’; deg e = n 4 deg g"""’. If
o0 = o then for all k=K, f&» = f&.»  Therefore,
we can consider the polynomial f(=-™, with the obvious
definition.

The branch in the iterative algorithm depends on the
scalar

deg (o2))
Alm = 3 Sima-i o™

i=0

= Sz — ST,

"Thioughout this article, we let “~” and “~” denote the odd and
even parts of a polynomial. Notice that “~" is the graph of an
odd sin wave and " is the graph of an even triangular wave.
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where we have set

Tdeg (G
(1) \ {(n)
b_'n‘l - 2 s‘.‘nﬂ ' (T‘
t-1

Evidently,

o = g iff AW = Oiff S, = S

in+l

For this reason, we call S the anticipated value of

S...1. More generally, define the anticipated values of
further power-sum symmetric functions by the iterative
equations

S'(’n) — l

Siin —_ (S}‘;"’)z
o -I
S.(:I':.)x = deg 2 S'_'k*l‘l ozm-]
For k=2n, S!» = §,. Evidently, the polynomial

S(u) (x) = § s'(n) xi

1=0
is the unique solution of the equations

Sm (x) = S™ (x2)

S$™ (x) o™ (x) = Even(x)

For this reason, we view S (x) as an estimate of S (x),
based only on §,,S,, - - - ,S;.. If there are no more than
n errors, then this estimate must be correct. However, if
there are additional errors, then the estimated power-
sum generating polynomial will differ from the true gen-
erating polynomial. Since S (x) = S (x) mod x*", we mea-
sure the difference by the polynomial

A (3) = (S (x) = S (x))/5"

A™ s thus seen to be the first coefficient of a polynomial
which represents the difference between the actual power-
sum generating function and the nth approximation to it.
Breaking A™ (x) up into even and odd parts gives

AW =X 4 Amw

%00

Evidently, A» = 0mod x**. Finally, since
S (x) ™ (x) = x*" mod x*™!

we define

§im pim

Al = x2n
3. Expression for A

We now give an expression for A'™ in terms of ¢, 7™,
S A and f . If we are given S,,S.,S,, - - -, Sz,
then we can compute o™, +», * ™ and A™. The equa-
tions we are about to give will relate the two unknown
polynomials f " and A™ = Ax + Ax*+, - - - ,. De-
tails are omitted.

The coefficients A, of x' in A™ (x) are given as
A =fy
A3 = fl (Az + fl'r, + o2 + fz) + f3

A; = fl (A4 + Az(fl‘h + o, + fz) + f:T's + f.’iTl
+ o, t+ f202 + f4 + (fx‘l'l + o + fz)z
+ f3 (Az + flTl + [+ £3 + fz) + f5
In general, Ay -, is given by an expression of kth degree

in f,, (k — 1)st degree ir f. and f,, (k — 2)nd degree in
foand f,, - - -, and 1st degree in fo -, and fur -,.

4. Decoding More than ¢ Errors

Let us consider how these expressions can be used to
decode more than ¢ errors in a t-error-correcting Bose-
Chaudhuri-Hocquenghem code. We first compute o,
1 o' 2@ ... i () Then we compute the first
several coefficients of S and of A®. We are then in a
position to apply some of the above formulas with n = ¢.

We next consider the Si, for k > 2¢t. For certain values
of k, this power-sum symmetric function will be a known
power of one of the given power-sum symmetric func-
tions:

Sy=8¥; i<k

whenever

$°2 =kmodN
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The values of k which are expressible in this way depend
critically on the specific parameters of the code, the block
length N and the error-correction capability t. For the
perfect Hamming codes (t =1 and N one less than a
power of iwo), there arc no odd k which are expressible
in the above manner. In general, however, several such
k are. For example, for the 5-error-correcting binary BCH
code of block length 63, we have §,, S, S-, S; and S,

given Sy, S, and S,; are unknown, but §,; = S!",
S,. = §! (which is known); S., = S.,; S., is unknown,
and S, =53, (which is unknown), - - -, etc.

In general, these relationships may be most rcadily
determined by examining the binary representations of
these numbers, as suggested by Mann (Ref. 26). Since
multiplication of j by 2mod (2* — 1) is equivalent to a
cyclic shift of the k-digit binary expansion of j, S, is
a power of S, in GF (2*) if and only if the k-digit binary
expansions of i and j are equal except for a cyclic shift.

For every known §S,, j odd, 2t < j < 4t, we also know
A", For each such known §;, we therefore have an
algebraic equation relating the unknown coefficients of
the polynomial f'=-™. If dego"’ =t and there are actu-
ally t + e errors, then deg f= " = e. Thus, we will have
several simultaneous algebraic equations in ¢ unknowns.
If we could solve these equations, then we could first
determine the polynomial f*>-*' and then the error poly-
nomial. Of course, we do not generally know the value
of e, but the objective is clearly to solve these equations
with a polynomial f of as small degree as possible.

For example, if A"’ = 0 for all k for which it is known,
then the polynomial f(x) = 1 solves all of the equations.
In this case, of course, the received word lies in a coset
containing no more than ¢ errors and the error polynomial
is given by o*.

1ifS, =0andR, = S, + §' = 0

1+ Sllifsl:#oandRa = Sa + S': =0

a(x) =

1+ S,x+-§—x21f31:;&0 Rar,éOandTr(g ) =0

If instead, AP % 0 for some value or values of k, then
there must be more than t errors, and o' is definitely
not the error polynomial. For large values of ¢, this in
itself is well worth knowing, because it enables the de-
coder to avoid going through a search over the Nth roots
of unity to attempt to find the roots of ¢/,

In order to correct the additional errors, one must
solve the equations for the coefficients of the polynomial f.
If there are only ¢ + 1 errors, then the algebraic equa-
tions contain only onc unknown, and the situation is
relatively hopeful. If this equation has degree =4, then
it can be quickly solved (without any search) by the
m~thods of Berlekamp, Rumsey and Solomon (SPS 37-39,
Vol. 1V, pp. 219-226). For example, we saw that in the
5-error correcting code of block length 63, the decoder
knows S,, S,, S., S:, S,, from which he can compute
oM g e gt 25§ and A%, Knowledge of
S,: = S!% enables one to compute A¢?, thereby obtaining
a quartic equation for f{**. Solution of this quartic en-
ables the decoder to determine f(x), and then the error
polynomial ¢ (x), assuming there were no more than 6
errors. If one or more of these equations is linear in
some unknown, then that unknown can be eliminated by
substitution. For example, if A, is known, then we can
find the error polynomial for a pattern of (¢ + 2) errors
with the solution of a single algebraic equation for f,.
The equation for A;, which is linear in f., can be used
to eliminate f, from the expression for the next known A;,
which is algebraic in f, and £..

In some cases, the equations generated by this method
appear to be unnecessarily complicated. For example,
consider a two-error-correcting BCH code. The error
polynomial can be shown to be given by

(0 errors)

(1 error)

(2 errors)

(1+(Sl+£)x)(1+£x+(—-+3‘+s,) )

if Ry%:0and Tr (%):ﬁO;Tr(%) =
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5. Three-Error Case

The zero and one-error cases can be verified immedi-
ately. The polynomial for the two-error case follows
directly from the iterative algorithm. This polynomial
has two roots in the tield if and only if Trace (R, S{) = 0.
(For proof, see SPS 37-39, Voi. 1V, pp. 219-226.)

In order to verify the three-error case, we must check
that the given expression for ¢ (x) satisfies Newton’s iden-
tities and that it has three distinct roots in the field. By
the itorative algorithm a polynomial of fourth degree
satisfies Newton’s identities when R, =0 if and only if
it is of the form

y R;c Ay " A8 .
=1+ sa+ (g g)e s ()e

The assumed polynomial was

1+ (S, +§)x<1 + éx + (%+ N +S,§)x”>

These two expressions agree if we set
R,
A1:&(51+§) < + 8i+ 5S¢
S, S

Finally, we must check that the claimed polynomial actu-
ally has three roots in the field. The condition for this

to occur is that
R\ _
Tr (F) =0

If the minimum weight member of a particular coset
is not unique, then there is little gain in decoding that
coset, for the a posteriori probability of error will be
greater than 1/2, no matter how the coset is decoded.
For this reason, it is of interest to inquire whether or
not the triple error pattern decoded by the above method
is unique. The answer depends upon the field. In GF (2°),
there are only three nonzero elements with trace 0; each
of them has a unique cube root. Any of the three may be
selected as a,, but, for any given syndrome, the resulting
triple error pattern will be the same. The choice of a,
will affect only those of the three errors denoted by
(S: + ¢). Since S; = S¢ in GF (2%), it is evident that this
double error correcting BCH code can in fact correct
three errors in all cases. Since this code is actually the

trivial code consisting only of two codewords, all zeroes
and all ones, this is no surprise.

In GF (24), there are 7 nouzero elements with trace
zero. Three of these are suitable choices for ¢,, and three
are suitable choices for a., but only one of them is a suit-
able choice for a,. Thus, in GF (2*) we must have a, = 1;
there is no other possibility. Hence, if R. is a cube, then
there are only three possible values of £, namely the three
cube roots of R,. The error pattern is represented by
S, + &, for i =1,23; with £ =R, Thus, in GF (29,
cosets with R, a perfect cube, have unique coset leaders.
Other cosets of weight three do not.

in all other fields, coset leaders are never unique. In
GF (2¥), this is obvious, since there are 2* — 1 nonzero
elements with trace 0, and any of them may be chosen
as a,; a, and a. need not be used at all. In GF (2%), we
begin by choosing a, = 1. Since (2**-! — 1) nonzero field
clements have trace zero, and only (2% '—1)/3 have
multiplicative order divisible by three, it is clear that
there are at least (2** — 4)/6 elements with trace 0 and
multiplicative order not divisible by three. If one of them
provides a suitable choice for a,, then we may set a, = a3,
or, .onversely, if one of them is a suitable choice for
a., we might set a. = ai. This shows that there must be
an equal number of choices for @, and 4., and hence, at
least (2**-* — 1),3 choices for each.

Finally, we must show that there are multiple choices
for the constant a,. If « is a primitive element of GF (2%),
then it can be shown that a, = «*****" represents such a
choice, as does a, = 1. The proof of this fact is omitted.
Thus, there is little value in decoding cosets of weight
three in two-error-correcting binary BCH codes, except
in the case when the block length is 15.

6. Conclusion

The method introduced here for correcting more than
t errors seems to be advantageous chiefly at moderate-to-
low information rates (large t, small difference between
S.:., and the next known S;, and correspondingly small
degree of the algebraic equations). The method outlined
by Gorenstein, Peterson, and Zierler (Ref. 27) for the
special case ¢ = 2, and implemented along the lines sug-
gested in (SPS 37-39, Vol. 1V, pp. 219-226) has obvious
advantages when ¢ = 2. At intermedicte rates, the method
suggested in (Ref. 25) appears preferable.

Our method is seen to be very efficient for correcting

one additional ervor, particularly when S.:.s, Sat.s, or
Sz+.7 is known, since in these cases the algebraic cquation
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for f, has degree 2, 3, or 4, respectively. Unfortunately,
this method does not appear to be very feasible for cor-
recting more than one additional error, unless someonc
devises a good algorithm for solving simultaneous alge-
braic equations in several unknowns in a finite field.

H. Information Processing: Signal and Noise in
Nonlinear Devices, C. A. Greenhall':

This article presents a definition of the signal and noise
portions of the output of a rather general nonlinear de-
vice. We are able to write down the sample functions of
the output signal and noise processes in a particularly
simple way. This leads to a formula for the signal output
of a hard limiter and thience to a convenient integral
expressionn for the output signal amplitude of a hard
bandpass limiter. The input signal can be both ampli-
tude and phase modulated. This integral expression was
obtained in the special case of phase modulation by
Tausworthe in SPS 37-35, Vol. 1V, pp. 307-309. In this
article we show the relationship between our method
and his.

1. Definition of Output Signal and Noise

Suppose the input to the device in aestion is

x(t)= s(t) +n(t) (—oo <t< ) (1)
where the signal s(t) and noise n (t) are sample functions
of independent rcal stationary processes §(t,¢,) and
N (t,£,), respectively. The ¢, and £, are sample “points”
(functions) of independent sample spaces Q, and Q,,
which have probability measures P, and P,. Assume that
these processes have finite variance:

E(s* (1) = f S (t,£) P, (ds) < o0
E(n (1) = / NP <o @

The output y () (— o Tt < ) of the device is to be
a sample function of a pro-:ess Y (¢, ¢., £.) dependent on the
input process x (t). We require that the device be time
invariant; in other words, if the input is x (f —8) then the
output is y (¢ — 8). 'This guarantees that Y is stationary.

1National Research Council postdoctoral resident research associate
sunported by NASA.
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We also ask that

E(y (1) = / / Y (b &, £2) Py (dés) Pa (dEs) < o0
@)

The fundamental problem is to determine what is
meant by the “signal” and “noise” portions of y(t). We
write y (t) = s, (¢) + n, (¢), and propose the following con-
ditions on this decomposition:

(i) s,(t) is to be the sample function of a stationary
process S, (t, &) of finite variance on the original
signal sample space Q..

(ii) n,(t) =y (t) —s,(t) is to be uncorrelated with all
random variables in the space M of sigr.al random
var’ Yles of finite variance, i.e., with all random
vi.owes f(é,) on Q, such that E(f?) < . Thus

E(n,(t)f) = E(n, () E{f) 4)
for all f in M.

Conditions (i) and (ii) imply that

E[y(t)y(t:)] = E[s,(t:) s, (t)] + E [n, (t.) m, (¢2)]
+ 2E (n,) E(s) (5)

and hence the power spectrum of y is, except possibly
for a dc term, the sum of the power spectra of s, and n,.
This condition is implied in Davenport’s paper (Ref. 28)
on the bandpass limiter, in which he separates the signal
and noise contributions to the power spectrum of the
output.

To see how far conditions (i) and (ii) determine s, and
n,, we write Eq. (4) as

E[(n,— E(m))f] =0 (6)

for all f in M. Then write y () as

y () = [s(t) + E(mj] + [ny (t) — E(n,)]

Since E (n,) is just a constant, it belongs to M. Therefore,
8,(t)+ E(n,) is in M by (i), and n,(t) — E(n,) is or-
thogonal to M by Eq. (6). Thus, s,(t) + E(n,) is the
projection p(t) = P(t,{,) of the random variable y(¢)
onto M, the “signal space.” An embryonic form of this
idea appeared in SPS 37-23, Vol. IV, pp. 160-164, in
which the signal portion was defined as the projection



P

o =

of y (t) onto the subspace generated by just a single ran-
dom variable in M.

Furthermore, the random variables

Sr/(t) = P(t) +c

n, () =y(t) —s,(t) (7)

where ¢ is any constant, satisfy (i) and (ii). Thus the
output signal and noise are determined within constants.

The projection p(t) can be written down explicitly.
We know that p(t) is an integrable random variable in
Q, satisfying E (p(t)f) = E(y (¢t)f) for all bounded mea-
surable f on Q,. This implies that with probability one
on Q,,

1W¢J=UHHW@J=/Y&&&WA&J

1

(8)

the conditional expectation of y(t) with respect to the
original signal process S(¢,¢.). It can be verified that P
is stationary.

We now set ¢ = 0 in Eq. (7) and adopt our definitions
of output signal and noise

s, (t) = E(y(8)|S)

n,(t) =y(t) —s, () (9)

In summary, the signal portion of the output at time ¢
is obtained by fixing the input signal and averaging the
output at time ¢ over all possible noise inputs belonging
to the noise process N.

The definition Eq. (9) may also be of use for nonsta-
tionary input signals. If the processes are not stationary,

then conditions (i) and (ii) yield that
s, () = E(y (D[S) +c(?)

where ¢ (t) is an arbitrary deterministic function of time.
Some further condition (like ¢ = constant) is needed to
define s, well enough.

2. Special Classes of Nonlinear Devices

We apply the definitions Eq. (9) of output signal and
noise to the following two classes ot devices.

a. Linear filter. Let

w»=mwm=/iu—anﬂm (—o << e)
(10)

where x = s + n as in Eq. (1) and
[”(1 + )R () dt < o (1)

The condition Eq. (11) on the impulse sesponse % of the
filter ensures that with probability one the integral
Eq. (10) exists for all ¢ and that E (y*) < oo, given that
E (x*) < 0. We will show that

s, (t) = (Hs) (1), my (t) = (Hn) (¢) (12)

where s, and n, are defined by Eq. (9). The condition
Eq. (11) and E (s*) < « ensures that (Hs) (t) is a random
variable on Q, with finite variance, so all we have to do is
verify the projection property

E[(Hs) (1) f] = E{ y()f] (13)

for all random variables f on Q, of finite variance. Thus

E[f [:h('— r)x(f)df] = /::h(t— DE[f(e(t) + n(®)] dr

=‘[:h(t—r)E[f:(t)]d'r=E[f[:h(t—r)s(f)dr] (14)
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which is Eq. (13). With the definition Eq. (9), then, a
linear filter does not mix the signal and noise.

This property extends further. Suppose we follow the
nonlinear device of subscction 1 by a filter H. Thus the
combined output is = (¢t) = (Hy) (t) — (Hs,) (t) + (Hn.,)(¢).
If we replace s and n in Eq. (J4) by s, and n,, and note
that E (fn, (t)) = 0 by definition, we see that

suy (8) = Hs, (t), nu, (t) = Hn, (t) (15)

The decomposition Eg. (9) is not affected by passing
throngh a linear filter.

b. Zero-memory device. Here we let
y(t) = F(x(t)) (16)

where F, the characteristic of the device, is a real-valued
function such that

Ewmnzﬁj;wﬁa&>

+ N(t, §n)) P, (d‘fn) P, (dfn) <

According to Eqs. (8) and (9),
()= [ Fla(0)+ N (6.6 P (8

=[F@®+MNM@=CMW (17)

where p is the probability density of n(t). As far as the
signal is concerned, the device acts like another device
with characteristic G, which, of course, depends on the
noise distribution p (n) dn. We will cali G the signal char-
acteristic of the device.

Now suppose the input signal and noise to this device
F are narrow-band .out a center frequer.cy w.. Let the
signal have the foriu s(t) = V (t) sin (et + 6 (2)), V (£)==0,
wher: V sin 6 and V cos ¢ are narrow-band about zero fre-
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quency with bandwidths small compared wi.h . Also,
assume that the random variables V (¢) and 4 (t), ¢ fized,
are independent, that #(t) is uniformly distributed in
[0,2=], and that the distribution of V (t) is independent
of t. Then

E[G:(s(t)] = E{G*(V (t)sin (et + 6(2)))]

- L[El_— [mc=(V(t)sin¢)d¢] < w0
(18)

Hence with probability one, we can expand G (V (¢) sin ¢)
in a Fourier series:

C(V(tsing) = S cx(V (1) e (19)

k4

in L* (0, 2=), where the Fourier coefficients ¢, are given by

a) =5 [ Csngends (@)

The same change of variable as was used in Eq. (18)
will give that

G(S(t)) =ké Ck (V(t)) PUICAETINS (21)

*x

in L*(Q.). The convergence in Eq. (21) is uniform in ¢
because the distribution of V (¢) is independent of ¢, by
assumption. The terms in Eq. (21) are the signal compo-
nents in the narrow frequency zones about each =X,
(k=12 - ). We can find a (nonrealizable) filter H
satisfying Eq. (11) whose complex transfer function is 1
in the kth zone and 0 in all other zones (by making the
transfer function smooth enough). If such a filter passes
the kth harmonic unchanged and annihiliies all the
others, then by Eq. (15) the signal output of the device
consisting of the zero-memory device followed by H is

2Re [cx (V (1) ettt -] (@)

In the first zone, the phase modulation 6(t) passes
through unchanged.




3. Bandgpass Limiter

An example of a zero--aemory device is the ideal band-
pass limitr, where

(23)

(See Eq. 16.) Henceforth the input noise n(t) will be a
stationary Gaussian process, with E (n) = 0, E (n?) = ¢°.
We easily calculate from Eq. (17) that the signal at the
output of the hard limiter is

(0= Gl = e {2

(o) = (%) / ewedz

(See Fig. 23.) For large signal-to-noise ratios the signal
characteristic G is itself like a hard limiter. For small
signal-to-noise ratios, G is almost linear, i.e.,

(24)

k —
2

Y . - _L T

eela)
1

- (z U"’) + Iwku)(

e%v’ cor A g (

where the I, are modified Besiel functions of the first
kind.

The signal power in the kth zone is

(o)

From t} - we can compute signal-to-noise ratio in this
zone, . e the tutal power there is 8/(»k)* (SPS 37-35,

)

(25)

Consider now the case of narrow-band signal and noise
inputs. The harmonic expansion Eq. (21) of s,(t) can be
written

s, (t) = Z by (v(t)) sin (kwit + kO (t)),v(t) = V(ft)
Lo (26)
bh(u):—‘_/”g(vsingb)sinkvdﬁ (k=12 ---)
) (27)

if k is even then b, = 0.

Tausworthe (SPS 37-35, Vol. 1V, pp. 307-309) obtained
the expression Eq. (27) for the signal amplitude in the
kth zone, in the absence of amplitude modulation. It can
be put in the form of a hypergeometric function,
Davenport’s original form (Ref. 28). Here is a Bessel
function form of by: i tegrate Eq. (27} by parts to obtain

=
=||°
T
8
.§
2
:
b
(ST
—
g.
-
=~
!
=
-
+
g
o~
»
+
-
o
-
o

1 1 o vicos e E_+_£
0)d0+4—r/_"e% cos( > o)do]

(k odd) (28)

Vol. 1V, i.p. 307-309), and the signal and noise are un-
correlated.

4. Comparison wit\y Tausworthe’s Treaiment

We will briefly review Tausworthe’s 1965 (SPS 37-35
Vol. 1V, pp. 307-308) durivation of the signal amplitude
Eq. (27) in the kt} zone of the output of a hard limiter.
He assumes a signal

a(y = (2)%sin (et + 0(2)) (29)
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; G (s)

Fig. 23. Signu! characteristic of a hard limiter in
Gaussizn noise

where 4 (t) is uniformly distribi.ted. The noise is narrov
— band stationary Gaussian. The ouipi:t of the har Yimite:
is written

y(t) = >E ys (¥)

A L Xodd

b (1) = Sk (8) + Nu (8), Se (8} = E (y (t) wi () wi (#)

wy (t) = (2)%sin (k ot + k6 (2) (30)

where y;, S, Ni are. respeciively, the total output, signal,
and roise in the kth zone. He then puts E (y (¢) wx (2)
- into the form of Eq. (27).

To see why our methods agree, first we remark that

E(()wi(t) =0 (k£Lkl=12 - )

@y

This can be shown by writing y. {s) in the form A (¢) sin
(kwot + ky (2)) (SPS 37-35, Vol. 1V, pp. 307-309, s ction J3),
and observing that the distribution of y (t) given 6 (t) is
symmetric about 6 (¢). The calculations arc omitted.

Summing over all zones, the output signs' is
s®= 2 Egmmi)mip (32)

: JPL SPACE PROGRAMS SUMMARY 37-44, VOL. IV

where we have used Eq. (31) to justify including the
even harmonics. Thus S (t), t fixed, is just the projection
of the random variable y (¢) onto the subspace generated
oy w,(t),w.(t), - - - . By the same maneuver as was
used in Eq. (13 it can be shown that this subspace is
just the set of random variables f(s(t)) depending only
on s(t) such that F[f*(s(t)] < = . However, our s, (¢
in Eq. (48) also belongs to thi. subspace and is the
projection of y(t) onto the larger subspace of random
variables which depend on the whole signal process.
Therefore, S(t) = s, (t); i.e., ouir methods give the sare
signal component of the output when V {t) is consiant,

I. Data Compression Techniques: Use of Six and
Eight Quantiles to Test Hypotheses in Da.a-
Compressed Experiments, /. Eisenberger

1. Introduction

Theoretical analyses relative to the use of sample
quantifes for data compression of space :<lemetry have
been given in three previous JfI. Technical Reports,
Refs. 28-31. The first of these repor's, Ref. 24, deals with
the problem of estiraating the paiameters of a normal
distributica using up to twenty sample gnantiles, and also
describes two goodness -of-ht tests, each using four sample
quantiles. The second and third reports, Refs. 30 and 31
are concerned with hypothe«is testing and the estimation
of the correlation coefficicnit p of a bivariate normal dis-
tribution, using up to four sample quantiies. A {orthcomine:
teclinical report, Tests of Hypotheses and Estimation of
the Correlation Coefficient Using Quaitites, 111, will ex-
tend most ~f the results given in Rets. 30 and 31 to six
and eight sample quantiles. The purpose of this article
is to give the hypotheses and assumptions relating to the
tests and the assumptions relating to estimating p. The
derivation and statement of the test statistics and esti-
mators are given in the report.

2. Review of Quantiles

To define a quantile, consider a sample of n independent
values x,,x,, - - - ,x, taken frora 1 distribution of con-
tinuous type with distribution function G(x) and density
function g (x). The pth quantile, or the quantile of order p
of the distribution cr population, denoted by ¢,, is defined
as the root of the equation G({) = p; that is

p=[:’dc(x>=jfg<=wx




The corresponding sample quantile z, is defined as fol-
lows: If the sample values are arranged in nondecreasing
order of magnitude

x“)éx‘“% ..

== Xin)
then x,, is called the ith orde: statistic and
:[1 = x[np];-l
where [np] is the greatest integer <<np.
If g(x) is differentiable in some neighborhood of each
quantile value considered, it has been shown (Ref. 32)
that the joint distribution of any number of szmple

quantiles is asymptotically normal as n— o« and that,
asymptotically,

E(z,)) = {
Var(z,) = En(gI{_T(-Z,,L))

AT

where p,. is the cotrelation between z, and z,,, p, < p..
The statement “g (x) = N (u, 0)” will mean that the random
variable under consideration is normally distributed with
mean p, variance ¢°, and has the density function g(x)
associated with it.

3. Hypotheses and Assumptions

For comparison purposes, the designation here of the
tests will coincide with that used for the tests in
the reports.

In test A, we are given a set of n independent observa-
tions from a normal population with known variance o3
the test is designed to decide whether the mean u has a
value of u, or a value of u,. In test A, the assumption
that o? is known is not used.

In test B, we test whether the standard deviation o has
a value of o, or a value of o,, When more than one
quantile is used, it is not necessary to assume that p
is known.

In tests D, -D, and E, it is assumed that we are given

sets of independent samples taken from two independent
normal populations with means u, and u, and variances

oi and ¢%. In test D we assume that ¢ = ¢, = 5. is known
and p, is unknown; we test whether p, =y, or p, = p, + 9,
# 0. In test D, the assumption that ¢ is known is not
used. In test E we assume that both p=p =p and o
are unknown and test whether o, = ¢, or 0. = 40, § > 0.

In tests F and F, we are given n independent pairs of
observations (x,,y.), (x,4-), * * -, (¥., Y») taken from two
normally distributed populations where g, (x) = N (i, @)
and g.(y) = N (p., 0.). In test F we assume that pu,, p,,
oy, 0. are known and test whether p = 0 or p 54 0. In fest F
we assume that both p =y, = p, and ¢ = ¢, = 0. are
unknown and again test whether p = 0 or p£0.

In estimating p, it will first be assumed that the as-
sumptions of test F hold. This estimator will be denoted
by 3.. Foi the second estimator $. it will be assumed that
& == uy = p. is unknown and that ¢, and o, are known. -

Table 3 summarizes the above hypotheses and as-
sumptions.

Table 3. Hypothases and assumptions relating to
the tests, and assumptions relating
to estimating o, and p.

Alternative
Test Null hypothesis hypothesis Assumptions
A _ _ o known
‘A‘ % g{x) =N (p, 0) g{x) = Nlu:, o) & unknown
B g(x) = N{u, ) g(x) =N (u, 03 4 unknown
D |} gix) =N(u, o) ¢ (x) = N{u, o) x and y independent;
o known, u unknown.
b) g:(y) =N{u. o) @:0)=N{u+0,0)] xandyindependent;
850 # and o unknown,
E| a#td=No g1 (x) =N {u, o) x and y independent;
g:{y) =N (u, 0) g:{y) = N {u, 80) 4 and o unknown.
>0
F [} 1(x) =N, ) |g:{x) = Nim, o) 1, pa, 01, @3 known
F g: () = Npz 02 | 9:0y) = N (2,09) = g = psand
’ p=0 PF#0 0 = 01 = o3 unknown
Estimating p: H1, s, 1, 03, known
Estimating p: 1 = p2 = p unknown
I o1 and o known

J. Astrometrics: A New Method For Extracting The

Reflectivity Distribution From Planetary
Radar Data, S. Zoher

1. Introduction

The present approach to the extraction of the planetary
reflectivity distribution from the range gated reflection
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off the observed planct is based on the spectrum of this
signal. In practice, the spectrum is computed from the
signal’s measured autocorrelation. A recently derived re-
sult (SPS 37-43, Vol. IV, pp. 330-338) makes it possible
to extract the information directly from the autocorrela-
tion function. Computationally, this method is markediy
different from the spectral approach, being based on a dif-
lerent set of assurmptions. There are indications that the
new method will more closely approximate reality. How-
ever, this is difticult to substantiate on theoretical grounds;
only test case comparisons between the two methods will
tell which is better. In the meantime, the main importance
of this new method lies simply in its providing a different
path to the desired reflectivity distribution. Thus, any fea-
ture or details which show up in both processing schemes
could be censidered with a high degree of confidence as
representing physical reality.

2. Formulation of the Problem

Let the reflectivity distribution be subjected to a paral-
lel projection along the line of sight onto a plane per-
pendicular to this line. We introduce the coordinates 6, v
in the projection plane as shown in Fig. 24. These are
associated with range and doppler shift, respectively. The
reflectivity distribution can now be expressed as a two
dimensional Fourier series in these two variables.™

~ x )
F(o, y) — E b”, eiz(anvire)

n.r_-%

with
b_""- = bnr; bn,or = bnr . (l)

We have shown (SPS 37-43, Vol. IV, pp. 330-338) that the
Nyquist rate samples of the (normalized) range-gated
autocorrelation function of the reflected signal (px) deper.d
on the b,, Fourier coefficients as follows:

b, cos [27 (n + k) ve]
kn,r=-m

X Jter[n(n+ k)31 @

Wr
o= ho vy

“Strictly speaking, 'I; (9, ») is not the reflectivity function defined in
SPS 37-43, Vol. 1V, pp. 330-338; it is the so-called “feature func-
tion.” The distinction between the two, however, is not important
here; hence, we use somewhat loosely the term “reflectivity distri-
bution.” For details, as well as the justification of Eq. (1), see
SPS 37-43, Vol. 1V, pp. 330-338.
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Fig. 24. Coordinates for the reflectivity distribution

? appearing in the Bessel function argument is half the
normalized limb-to-limb bandwidth; v. is the normalized
frequency of the subradar point (Fig. 24). Here h,, ay are
computable from the range-gate and backscatter func-
tions, while W, and W are, respectively, computable and
measurable powers in the radar system.

We have also shown that for a featureless “grey planet”
Eq. (2) leads to the much simpler samples g given by:¢

g = cos 2rkv) S e adt(vkD). 3)

k_0

Egs. (2) and (3) are the basis for the new extraction
procedure.

Our purpose is to find the reflectivity distribution
I3 (8, v), given the correlation coefficients p. Equivalently,
our problem can be referred to as the inversion of Eq. (2);
namely, given the set p;, find the set b,,. It should be real-
ized from the outset that if only t})\e first I samples are
available, then there is no unique F (4,v) that fits them;
rather, there is a large family of possible solutions, all of
which share the first I correlation coefficients. We can
narrow the range of possible functions to a single one only
by introducing specific assumptions to compensate for the
missing data. What assumptions should one make? Here
we have only some simple guidelines, such as the require-
ment that the assumptions should be plausible and that
the solutions based on different assumptions should not be

"¢, is Neumann's symbol (e, = 2, except & = 1),




drastically different. In the final analysis, of course, the
assumptions should lead to manageable mathematics.

It is with this background in mind that we approach the
inversion of Eq. (2). Our fundamental assumption is that
all b,,’s vanish for n, r greater than some specific bounds
consistent with the amount of datz available. The basic
justifica._.n for this is that F (4, v), being a function repre-
senting some aspect of physica!l reality, is not expected to
have jumps or discontinuities. Its Fourier coefficients b,,
should, therefore, decay to zero with incrcasing n, r.

The effect of this assumption on Eq. (2) is to replace the
infinite summations ovei n,r with finite ones so that our
problem is essentially reduced to the solution of a finite
set of linear equations. A possible approach to the prob-
lem is to obtain the autocorrelation for several adjacent
wones covering the region of interest and then process the
data of all the zones simultaneously. Such a_procedure
does actually lead to a reasonable estimate of F (6,v), and
we shall return to it later on. However, the amor .
computation involved in such a scheme is prohibitive a:1d
seems to rule this approach out as a practical solution.

An alternative approach which does lead to a practical
scheme is to use sufficiently narrow gates so that F (6, v)
could be assumed independent of # over the zone. This
results in the processing of each zone independer:ly of
the others, leading to a drastic reduction in computations.
We consider this approach in detail in the next subsection.

3. The New Extraction Method

Our initial task is to gbtain the special case of Eq. (2)
for the constraint that F (4, v) be independent of 6. This
constraint is satisfied by assigning the following form
to b,,:

bnr = bn(rsru = bnsro .

Substitution of this in Eq. (2) leads to*

o, = ho &Z by cos [2 (k + 1) ve]

X Z ek [r(k +n)0].

k=0

*The vanishing of the high order b,’s will be handled later on.

310

This, however, can be expressed in terms of the correla-
tion coefficients of the corresponding “grey planet” Eq. (3),

yielding
[ == h.. —"‘/i B - nbn . (4)

The computation of the g-parameters has been discussed
in detail {SPS 37-43, Vol. IV, pp. 330-338). Of the remain-
ing parameters, W, and h, can be computed; whereas W,
the signal power, can be measured. We see, therefore,
that if the p,’s are measured, the only unknowns in Eq. (4)
are the b,’s. In practice, however, we never get the auto-
correlation of the received signal directly. The receiver,
from whose output we try to obtaiu the g;’s, will usually
have a nonflat frequency response, as well as its own noise
in the frequency band of interest. Under these conditions,
the measured autocorrelation is not the signal autocorrela-
tion appearing in Eq. (4). It is, however, simply related
0 it. Thus, it has been shown (SPS 37-31, Vol. 1V,
pp. 315-520) that p; is related to measured parameters
by the following equation:

-]
pm; —n; =a X ni_xp, (5)

k=-0
where

n; = ith normalized correlation coeflicient of the
receiver output when fed with white noise;

m; = ith normalized correlation coefficient of the
receiver output when a signal is received;

W signal power at receiver input
a= 337 = . . . >
W%  noise power at receiver input ’

_ Wy _ signal plus noise power at receiver cutput
B=w, " noise power at receiver output

Obviously, the equation relating the unknown b,’s to
measured entities is obtained by substituting Eq. (4) in
Eq. (5). This yields

1 W

O‘E-h_o . —ﬁ;:'(ﬁﬂu - n¢) = Z ”i-kgk-fbl . (6)

Kk f=-0

We pause here briefly to point out an interesting aspect
of Eq. (8). The basic fact leading Eq. (5) is that for band-
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limited signals, the effect of a filter on the autocorrelation
can always be represented in the form

e .

e
) P Xy
o0

"

~~

k_-

where

x; = autocorrelation coefficient of input signal;

y. = autocorrelation coefficient of output signal;

a set of parameters characterizing the filter and
derivable from its more familiar transfer function.

P,

In view of this, we may rephrase Eq. (6)

v, = E ﬂ;»k(‘z gk—jbi)

k=-x j=-o0

and take the attitude that the v,’s are the autocorrelation
coefficients of a signal obtained by passing the “feature
signal” (the “signal” whose correlation coefficients are the
b,’s) through two filters in cascade: the “spherical filter”
(parameters g;) and the filter representing the receiver
(parameters n,) (Fig. 25).

From this point of view it is quite clear that obtaining
the feature function is essentially identical with the more
familiar problem of obtaining a receiver input autocorre-
lation from its measured output autocorrelation. The only
difference is that we have here a “receiver” with a more
complicated (but computable) transfer function.

We return now to the solution of Eq. (6). Invoking our
assumption concerning the vanishing of the high order
b;’s, we set

b;=0 for|f|>1T. )

Hence

v = é { § ﬂs-kgk-j}b; = ,_é S”b; (8)

j=-d \k=- J

.

V) et RECEIVER [r———et———d SPHERICAL

FILTER" 4

Fig. 25. The system effect on the b,’s
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where

SlI: E ni 18k - (9)

Ao x

From Eq. (8) it is obvious that to solve for the b,’s we
must have all v, for |i|=]. The solution would then in-
volve the inversion of the matrix § (whose ij element is S;,)
of order (2] +- 1). We turn our attention now to this matrix.

Usually, only a finite number of ni’s is available. Hence,
as before, we compensate for our incomplete information
by setting the unavailable n;’s to zero. Conceptually, how-
ever, the situation here is different from the previous one.
The transfer function of the receiver could, in principle,
be approximated quite well by a rational frequency func-
tion. From the finite set of parameters of this rational func-
tion, one could compute the infinite set of ny’s. This would
then require the computation of an infinite number of g;’s.
Thus, the motivation for the truncation of the k summa-
tion in Eq. (9) is not so much a lack of data as it is a desire
to obtain a practical computation scheme.

The truncation is effected by setting

=0 for[k| > K .»*

Hence
i+K
Sij = 2 Nix8k-j - (10)
k=i-K

We proceed now to prove that S is a symmetric Toeplitz
matrix.’” This is simply effected by setting k —j =g in
Eq. (10). Thus

(i-+K

si; = 2

q=ti-j)-K

Nii-r-o8q = Si-g. (11)

We see that the dependence of S;; on i, is only through
the difference (i — j). Hence, the matrix S is a Toeplitz
matrix.

“Present JPL practice is to use the same equipment to obtain both
m; and n.. Hence K = J.

YA matrix x whose # element u(, is a function of § — { rather than
1,7 separately will have one and the same element along every
diagonal, superdiagonal or subdiagonal. It is known as a Toeplitz
matrix.

m

.t




To prove symmetry we rewrite Eq. (11) as follows

Lok

Sl. = E nl\-ng .
q h-K
Hence
S A
S = 2 n«k—ng .
q--(k+K)

The evenness of the autocorrelation functions n (z), g(r)
now yields

k+A
S_;;: 2 nk_,-g,-ZSk.
j-k-k
o0
W
Poe — Doz yyy
kon1=-2

(z=0,1,

We conclude that to solve Eq. (8) and obtain the b,’s
we have to invert a symmetric Toeplitz matrix of order
(2/ + 1). This is readily accomplished even for large J by
the method of W. F. Trench (Ref. 33). Preliminary analy-
sis indicates, for example, that the complete solution of
Eq. (8) for ] = 50 would take about 4 sec on the IBM 7094.

We turn now briefly to the general case mentioned
earlier in which we ¢o not neglect the 6 variation of the
feature function across the observed zone. Instead of hav-
ing to deal with one autocorrelation function, we now
consider (Z + 1) such functions corresponding to (Z + 1)
different zones. To distingnish among these we attach an
extra index to p, h, a, w. Thus, we have for zone z

Prez» hov 2 Bkzs ‘Vz .

With this terminology, Eq. (2) becomes

b..ai; cos [2x (n + k) v.] JE., [x(n + k)V]

7). (12)

In analogy with the g,-parameters introduced in the special case, we introduce now the Y,,,.-parameters defined as

follows:

w
Ym e = ho: W—:' cos (21rmv¢)

k=-o0

1. W
3 h,. —“71 cos (2rmv,)

Applying this to Eq. (12) we get

ak:]ior (Wm?’)

€, 0xz []3‘;; (n’fn';) + Jix (wm{'\)] .

k=0

o
Pi: = E Yk-n. r, zbn r.

n,ra-0

We note that Y,,. is an even function of r. Combining this with the symmetry properties of b,, (SPS 37-43, Vol. IV,

pp. 330-338), we get

1

Pk: = E E ee (Yk-”, r s + ch-u. r, z) bll' .

nr=0

Finally, in analogy with Eq. (7) we assume

b.r=o

N2

for |n|>1o0r |r|>Z,
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where I is the number of available correlation coefficients in cach of the Z - 1 zones. This leads to

roz
no !

1 z :
P . = ) F,,",(kan,r,: + Ykm,r.:) bnr- (13)

noron

This equation can be solved by the simple artifice of
arranging b,, and p,_ as column matrices. Specifically, let
us introduce the following two column matrices of order
I+1

Py, 2

Pr.z b‘-’

bl, r_]

—.pl.:- -

and the square matrix ?,: of order (I + 1) whose k, n ele-
ment is given by

(?r:)kn =

L™

(Yk—n, roz + Ykm. T, :) .

<

Eq. (13) can now be expressed in terms of these matrices
as follows:

>
>

pam A — —

Yoo Ym T Yaz B o
A A A

3 Yw Yn t le Bx

b,

¥l

~ A A A
_Yzo Yo - - Yzz_

We see that solving for the (I + 1)(Z + 1) required b,,
coefficients calls for the inversion of a matrix of order
(I+1)(Z+1).

No special exploitable structure is evident here and the
matrix is not even symmetric. It should be pointed out in
passing that there is an alternative formulation in which
each submatrix turns out to be a Toeplitz matrix though
of almost twice the order (21 + 1). However, it is not
obvious how such a structure could be exploited to sim-
plify the inversion.
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In the present JPL system, a typical case would involve
I =50 7 = 8. Hence, the matrix to be inverted is of
order 459. It is doubttul whether such an inversion should
even be attempted in view of the accumulation of errors
and prohibitive cost.

Attacking the same problem with the previous scneme,
we would treat each of the 9 zones separately (neglecting
the # variation inside a zone) and end up by inverting
9 symmetric Toeplitz matrices of order 101. Solving all 9
matrix equations would take about 33 sec on the IBM 7094.

K. Astrometrics: Elimination of Charged Electron
Effects from Ranging Data, P. E. Reichley

1. Summary

The effect of charged electrons on ranging data in the
ionosphere and interplanetary medium plays an important
role in the growing need for greater tracking accuracies.
We present in this article 2 method of obtaining the range
change from tracking point to tracking point with effects
due only to the troposphere. The effects due to the charged
electron distribution appear as second order effects in this
method. These results are obtained under the assumption
that the troposphere and charged electron distributions
are spherically symmetric and that the spacecraft is being
tracked with both doppler and range points (obtained by
a ranging code). This range change can then be utilized
to yield the true range with or without a constant bias,
depending on whether the true range is known at a prior
time or not. Ranging accuracies of <1 m are possible with
this method.

2. introduction

The range to a spacecraft in geocentric polar coor-
dinates, as determined by a range code, is given by
(SPS 37-29, Vol. IV, pp. 229-239)

n m(r)n,(r)dr

R= ). - b w




where n (r) and n, (r) are the phase and group indices of
refraction of the signal; r, and r, are the station and space-
craft radius vectors; and b is the impact parameter of the
ray path.

We shall assumec thzt the phase index of vefraction has
the form
ni(r) =1+ ef(N=1+e(f.(r) = f.(r)) (@)
where |f(r)]=1forr,=r, < « and ¢ is a positive param-
eter. We shall consider £, (r) to be frequency independent,
corresponding to the troposphere, and f. (r) to be frequency
dependent, corresponding to the ionosphere and interplan-
etary medium. We shall consider frequencies at L-band
(900 Mhz) or higher, in which case max f, (r) > max f, (r)
and ¢ = 2« where a is the ground level refractivity (SPS
37-43, Vol. IV, pp. 314-321). If we neglect absorption and

external magnetic fields the group index is given by
(SPS 37-43, Vol. 1V, pp. 314-321)

The range to a spacecraft in geocentric polar coordi-
nates a5 determined by doppler is given by (SPS 37-29,
Vol. IV, pn. 229-239)

LA NS

rn‘
Rd "‘/ (r-n (1’ '/z (4)

and the range rate determined by doppler is simply

iid:

dR, ,

A perturbation solution for the impact parameter is
given by (SPS 37-43, Vol. IV, pn. 314-321)

b=0>b, + eb, + b, + 0(¢?) (6)
_ 1+« fl (1‘)
m(r) == (r) ) where

b = r,r,5in 6

T (241 - 2rricos 9)%
b = _1 (r¥ — bE)%( rf (r)dr

VT2 (1t — b))% — (r2 - b*)"l b, (1'2 b))%

- _ (ri — b§)%(r3 — bj)% ( 1

b: - (rl 0) ( bo 16 [ bllb ( 2 b(z’)% ( f —_ bg)%)

_1 norf(r)dr +3

t), (rP=b% " 8 ), (-

where 4 is the angular separation between r, and 7,.

3. Elimination of Charged Electron Effects to First Order

In ranging a spacecraft we shall assume that at some
time ¢, the range to the spacecraft is obtained by means
of a range code; then the doppler shift is obtained and
counted incrementally (in l-sec intervals for example)
until some time ¢,, at which time the range is obtained by
means of the range code. This process is then repeated
from time ¢, to time t,, from time ¢, to time #,, etc.

Since we are incrementally counting doppler, this is
equivalent to integrating Eq. /5) from time ¢; to time #.,.

34

"pfdr 3 " d

ro (rz - bs)%

Hence, the range change due to doppler count from time
t; to time #,,,, from Eqs. (4) and (5), is

mma[“mm=mmm—mm) (8)

The range change due to range code ranging from time #
to ¢,,, is, from Eq. (1),

ARmR(t,,) ~ R(t) ®)
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A perturbation solution for R(t,) is (SPS 37-43, Vol. IV, pp. 314-321)

R(tl) ~R, (t,) : % F/:rn(l.’ r({;-(f—)- ‘;)Sf('.»tf;gl)zdr
LT[t rh () = @) (i 0) + 3 () dr SERIAGE RO
- §,4[/m R —- 27, (t:) by (t:) / B (1) ] +0(e)  (10)

where R, (t,) is the straight line or true range, and b, and b, are given by Eq. (7). We can obtain the same type of solution
for Rq(t,) by substituting Eqgs. (2) and (8) into Eq. (4) and expanding in powers of ¢. This yields

1 [ . — (M d

LT, s = f ) dr 0 P () — £ )] o
+ EE' [Zb., (ti)bl (té) /r“ (rg _ bé (t')):y_, - / (r-_» . bﬁ (f.))% ] + 0(5 ) (11)

after utilizing Eq. (7).

If we add Egs. (8) and (9) and divide by 2, we have, from Egs. (10) and (11),

SR+ AR 1 /'r.(:..:) rf, (r)dr
A= T =R SR Y | ST

1 ra1(ty) 111 (r)dr ' 1
——2-8,/,.. -(’TW + r'[zbo(ti,,)bl(t‘”)/‘r

n p(fi () Hfa()dr 1 [nten S = fi(D))dr L [0 B (fi ) — fi(r)) dr .
X[ r—-bit)% 8/, (= bi(t:. )% *5[. (r — b3t ]+°“’

SRTIRY ,((:: Y)b:(ft‘f:)))):r _ Ti'b" (t:) b (t)

[

(12)

The quantity A;R,, as seen from Eq. (12), represents the range change due to spacecraft motion plus, to first order, the
change due to the troposphere alone. The f.-terms have disappeared from the e-term which is our main achievement.

The coefficient of ¢* in Eq. (12) consists of the difference of two terms of the form

1 nr(f(n) + h(N)dr 1 [ R — fi(n)dr
Thb f F-b» 8 [_ (* — by% (13)

We can show that the above quantity multiplied by ¢* is always less than 8 m for ranging in the solar system, exclud-
ing signals that pass close to the Sun. The upper limit of 8 m is obtained when the signal path grazes the horizon and
the spacecraft is just outside of the tropusphere. As the spacecraft moves farther away, the effecr of the ionosphere and
interplanetary medium reduces Eq. (13) in magnitude. Hence, we may neglect the coeficient of ¢? in Eq. (12).
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Since £, (r' = 0 outside of the troposphere, we can write
integrals of the form

oorf(rydr [ rfi(r)dr

F=-] =" R T

where r, is the radius vector to the upper limit of the
troposphere. Hence we can rewrite Eq. (12) (neglecting
terms of 0 (¢*) and higher)

1
AR =R, () = Ru(t) + 5 T (t,.) - é-eT(t.) (15)

Since it can be shown (SPS 37-43, Vol. IV, pp. 314-321)
that the coefficient of ¢/ in Eq. (10) is of the same magni-
tude as the cocfficient of * in Eq. (12), we have (neglect-
ing terms of 0(¢*) and higher)

R(t;)=R.(t,) + %rT(t,) + -;*cl(t.) (16)

where

n rf.(r)dr

=), &b

(17)

If tke true range to the spacecraft is known at some
range pcint at time t,, then the range ~x at later times is
obtained by means of Eq. (15), i.e.

"n-1

R (ts) = R, (2,) + Z AR,

iz0

=R, (t,) + -;-J (t,) — %.T (+) (18)

We sce that the true range is obtained at ¢, with tropo-
spheric corrections at ¢, and ¢,. If the true range is not
known, then -8 (¢,) can be obtained with a constant bias.
Upon combining Egs. (1%) and (17)

o1

R(t,) = R(t,) + Z AR

]

= R, (t.) + -;—sT(t,,) + %e[ (t) (19)

which yiclds the true runge with a tropospheric correction
at t, and a constant bias of '2 ¢ (¢,). This bias can be mini-
mized by choosing ¢, during the night and or when the
spacecraft is at its highest elevation angle. As long as the
spuacecraft is outside of the influence of the w.opnsphere,
the corrections for the troposphere are not influenced by
errors in the range to the spacecraft, which follows from
Eq. (14).

4. Conclusions

The basic advantage of the ranging method presented
in the article is that high precision ranging data free of
charged electron effects can be obtained. The type of data
required is precisely the type of ranging data that is ob-
tained by tracking devices currently in use in the deep
space net. The technique, which is very simple, could
easily be automated at the tracking stations. Furthermore,
since tracking is rarely done at low elevation angles, the
error (one way) of 8 1 can easily be reduced by a factor
of 10; this is equivalent to tracking accuracies on the order
of 10 nanosec.
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